1 / 14

Introduction to Bicoherence Monitors: BicoViewer & BicoMon

Introduction to Bicoherence Monitors: BicoViewer & BicoMon. Steve Penn (HWS). Why use BicoViewer?. Noise Investigations Step 1: Power Spectral Density (PSD) investigation, done in DTT Tells you the frequency and power of the noise If the noise is a “known” source, then you are done

Download Presentation

Introduction to Bicoherence Monitors: BicoViewer & BicoMon

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Introduction to Bicoherence Monitors:BicoViewer & BicoMon Steve Penn (HWS)

  2. Why use BicoViewer? • Noise Investigations • Step 1: Power Spectral Density (PSD) investigation, done in DTT • Tells you the frequency and power of the noise • If the noise is a “known” source, then you are done • Step 2: Coherence investigation , done in DTT • Tells you the phase correlation between two channels • This gives an indication of the physical coupling between these channel source • Step 3: Bicoherence investigation, done in BicoViewer • Tells you the phase correlation phase correlation at different frequencies, possibly different channels • Indicates the coupling either in the physical system or in the sensing LIGO DCC G040410-00-Z

  3. Statistics (1) • “1D” Statistics: (2nd Order Cumulants, 1st Order Spectra) • Correlation: • Power Spectral Density: • Coherence: • Tells us power and phase coherence at a given frequency LIGO DCC G040410-00-Z

  4. Statistics (2) • “2D” Statistics: (3rd Order Cumulants, 2nd Order Spectra) • Bicumulant: • Bispectral Density: • Bicoherence: • Tells us power and phase coherence at a coupled frequency LIGO DCC G040410-00-Z

  5. Why Higher Order Statistics? • For a Gaussian process: • For independent processes: • Allows for isolation of nonGaussian processes • Visual check of frequency coupling and phase noise • Statistical test for the probability of gaussianity and linearity • Iterative process to reconstruct nongaussian signal from the higher order cumulants LIGO DCC G040410-00-Z

  6. BicoViewer (Foreground Monitor) • Plots Bicoherence (auto- or cross-) & PSD’s of input channels • Proper decimation, Optimized windowing, Vectorized FFT • User selects: (Channels, Frequency Range, Frequency resolution, Data Span, Overlap) • Outputs GIF files. Script to make video. • Table of Current and New Parameters with Accuracy & Time Estimates • Plot Countdown clock • Text File Output • Faster Smoothing Routine • Heterodyning • Strip Chart for Monitoring Bicoherence of certain ROI • Output calculation parameters as configuration for BicoMon LIGO DCC G040410-00-Z

  7. Current Version LIGO DCC G040410-00-Z

  8. Current Version (2) LIGO DCC G040410-00-Z

  9. H1:LSC-AS_I movie LIGO DCC G040410-00-Z

  10. H1:LSC-AS_Q movie LIGO DCC G040410-00-Z

  11. Online Demo(requires X windows) On Fortress: > /export/home/spenn/BicoViewer new version soon in DMT LIGO DCC G040410-00-Z

  12. BicoMon: Current Version • Monitor integrates bicoherence over specified frequency ROI • Calculates bicoherence for multiple channel combinations • Integrates bicoherence over multiple specified ROI • Integrates bicoherence over entire unique area (Gaussianity) • Trends Data and sends to DMTviewer. • Included proper decimation with filtering rather than rebinning • Tests for Operational State LIGO DCC G040410-00-Z

  13. 3 30 C 2 H1:LSC-AS_Q 16384 H1:SUS-ITMX_OPLEV_PERROR 2048 256 1.0 0.5 64 M Bico:H1:AS_Q-ITMX_OPLEV_PERROR_ALL 0 0 0 M Bico:H1:AS_Q-ITMX_OPLEV_PERROR_60_2_2 60 2 2 M Bico:H1:AS_Q-ITMX_OPLEV_PERROR_60_10_2 60 10 2 M Bico:H1:AS_Q-ITMX_OPLEV_PERROR_60_38_2 60 38 2 M Bico:H1:AS_Q-ITMX_OPLEV_PERROR_60_50_2 60 50 2 M Bico:H1:AS_Q-ITMX_OPLEV_PERROR_120_2_2 120 2 2 M Bico:H1:AS_Q-ITMX_OPLEV_PERROR_120_10_2 120 10 2 M Bico:H1:AS_Q-ITMX_OPLEV_PERROR_120_38_2 120 38 2 M Bico:H1:AS_Q-ITMX_OPLEV_PERROR_120_50_2 120 50 2 M Bico:H1:AS_Q-ITMX_OPLEV_PERROR_180_2_2 180 2 2 M Bico:H1:AS_Q-ITMX_OPLEV_PERROR_180_10_2 180 10 2 M Bico:H1:AS_Q-ITMX_OPLEV_PERROR_180_38_2 180 38 2 M Bico:H1:AS_Q-ITMX_OPLEV_PERROR_180_50_2 180 50 2 C 2 H1:LSC-AS_Q 16384 H1:SUS-ITMY_OPLEV_PERROR 2048 256 1.0 0.5 64 M Bico:H1:AS_Q-ITMY_OPLEV_PERROR_ALL 0 0 0 M Bico:H1:AS_Q-ITMY_OPLEV_PERROR_60_2_2 60 2 2 M Bico:H1:AS_Q-ITMY_OPLEV_PERROR_60_10_2 60 10 2 M Bico:H1:AS_Q-ITMY_OPLEV_PERROR_60_38_2 60 38 2 M Bico:H1:AS_Q-ITMY_OPLEV_PERROR_60_50_2 60 50 2 M Bico:H1:AS_Q-ITMY_OPLEV_PERROR_120_2_2 120 2 2 M Bico:H1:AS_Q-ITMY_OPLEV_PERROR_120_10_2 120 10 2 M Bico:H1:AS_Q-ITMY_OPLEV_PERROR_120_38_2 120 38 2 M Bico:H1:AS_Q-ITMY_OPLEV_PERROR_120_50_2 120 50 2 M Bico:H1:AS_Q-ITMY_OPLEV_PERROR_180_2_2 180 2 2 M Bico:H1:AS_Q-ITMY_OPLEV_PERROR_180_10_2 180 10 2 M Bico:H1:AS_Q-ITMY_OPLEV_PERROR_180_38_2 180 38 2 M Bico:H1:AS_Q-ITMY_OPLEV_PERROR_180_50_2 180 50 2 C 1 H1:LSC-AS_Q 16384 256 1.0 0.5 64 M Bico:H1:AS_Q_ALL 0 0 0 M Bico:H1:AS_Q_120_2_2 120 2 2 M Bico:H1:AS_Q_120_10_2 120 10 2 M Bico:H1:AS_Q_120_38_2 120 38 2 Configuration File Calculation Parameters Measurement Parameters LIGO DCC G040410-00-Z

  14. Conclusions • Bicoherence monitors could be a useful tool for analyzing data for glitches, gaussianity, upconversion, and chirps. • We are now at sensitivity where up-converted data can be seen • BicoMon operational. • BicoViewer works (Beta Testers Needed). • Beta Test Need: Now that the IFO is at/near a sensitivity to see bicoherence, we need people to use monitor and make bicoherence an analysis tool on par with PSDs or coherence. LIGO DCC G040410-00-Z

More Related