slide1
Download
Skip this Video
Download Presentation
Kenneth Wood St Andrews

Loading in 2 Seconds...

play fullscreen
1 / 26

Kenneth Wood St Andrews - PowerPoint PPT Presentation


  • 71 Views
  • Uploaded on

Monte Carlo Radiation Transfer in Protoplanetary Disks: Disk-Planet Interactions, Structure and Warping. Kenneth Wood St Andrews. Radiation Transfer + Hydrodynamics. RT Models: Barbara Whitney, Jon Bjorkman, Christina Walker, Mark O’Sullivan Dust Theory: Mike Wolff

loader
I am the owner, or an agent authorized to act on behalf of the owner, of the copyrighted work described.
capcha
Download Presentation

PowerPoint Slideshow about ' Kenneth Wood St Andrews' - jeanne


An Image/Link below is provided (as is) to download presentation

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.


- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -
Presentation Transcript
slide1

Monte Carlo Radiation Transfer in Protoplanetary Disks:Disk-Planet Interactions, Structure and Warping

Kenneth Wood

St Andrews

radiation transfer hydrodynamics
Radiation Transfer + Hydrodynamics

RT Models: Barbara Whitney, Jon Bjorkman,

Christina Walker, Mark O’Sullivan

Dust Theory: Mike Wolff

SPH Models: Ken Rice, Mike Truss, Ian Bonnell

Observations: Charlie Lada, Ed Churchwell,

Glenn Schneider, Angela Cotera,

Keivan Stassun

monte carlo development history
Monte Carlo Development History
  • Scattered light disks & envelopes (1992)
  • 3D geometry & illumination (1996)
  • Dust radiative equilibrium (2001)
  • Monte Carlo for disk surface + diffusion for interior (2002)
  • Density grids from SPH simulations (2002)
  • Spatial variation of dust opacity (2003)
  • Self consistent vertical hydrostatic equilibrium (2003)

1992: Predictions

1996: HST data

GM Aur: 4AU gap,

disk-planet interaction

disk structure calculations
Disk Structure Calculations
  • Above used parameterized disks: power laws for S(r), h(r)
  • Disk theory: reduce model parameter space
  • Irradiated accretion disks: S ~ r -1, h ~ r1.25 (D’Alessio, Calvet, & collaborators)
  • New Monte Carlo: iterate for disk structure (Walker et al. 2004)
  • Model disks around GM Aur and AA Tau
disk planet interactions gap clearing
Disk-Planet Interactions: Gap Clearing
  • Observational signatures: images, SEDs?

Simulation from

Ken Rice & Phil Armitage

Papaloizou, Lin, Bodenheimer, Lubow,

Artymowicz, Nelson, D’Angelo, Kley, …

protoplanetary disks

700mm

700mm ALMA simulation

Wolf et al. 2002

Protoplanetary Disks
  • Need high resolution imaging: ALMA
  • Gap clearing simulation images:
inner gaps from sed modeling
Inner Gaps from SED Modeling
  • Remove inner disk material: remove near-IR excess emission

Rin = 7R*

Rin = 4 AU

GM Aur

gm aur disk planet interaction

1200 AU

GM Aur: Disk/Planet Interaction?

Schneider et al. 2003

  • NICMOS coronagraph
  • Scattered light modeling:
  • Mdisk ~ 0.04 M8; Rdisk ~ 300 AU; i ~ 50
gm aur disk planet interaction1
GM Aur: Disk/Planet Interaction?
  • No near-IR excess
  • SED model requires 4AU gap: planet?
gm aur disk planet interaction2
GM Aur: Disk/Planet Interaction?
  • 3D SPH calculation from Ken Rice
  • Planet at 2.5AU clears inner 4AU in ~2000 yr

Rice et al. 2003

gm aur disk planet interaction3
GM Aur: Disk/Planet Interaction?
  • 3D SPH calculation from Ken Rice
  • Planet at 2.5AU clears inner 4AU in ~2000 yr

Rice et al. 2003

gm aur disk planet interaction4
GM Aur: Disk/Planet Interaction?
  • Spitzer SED can discriminate planet mass
  • Centroid shifting ~ 0.1mas: Keck, SIM?

Mp = 2MJ

Mp = 50MJ

Rice et al. 2003

gm aur disk planet interaction5

TW Hya

GM Aur

GM Aur: Disk/Planet Interaction?
  • Spitzer SED can discriminate planet mass
  • Centroid shifting ~ 0.1mas: Keck, SIM?

Rice et al. 2003

Calvet et al. 2002

aa tau large and small scale disk structure
AA Tau: Large and Small Scale Disk Structure
  • Photopolarimetry (Bouvier, Menard, et al.) P ~ 8.4 days, DV ~ 1 mag, D(B-V) ~ 0 Star eclipsed by warp in inner disk
  • SED model to get disk structure
  • Warped disk model for photopolarimetry
  • SPH: tilted dipole warps disk
aa tau sed modeling
AA Tau SED Modeling
  • T = 4000 K, R = 2R8, M = 0.5M8
  • M = 2e-9 M8/yr, Rd = 200 AU, i = 70

O’Sullivan et al. (2004)

analytic disk warp
Analytic Disk Warp
  • AA Tau: P ~ 8.4 days
  • Warp at r ~ 0.07 AU, amplitude ~ 0.02 AU

O’Sullivan et al. (2004)

photopolarimetry simulation
Photopolarimetry Simulation

DV

DV ~ 1 mag

DP ~ 0.3%

P (%)

PA

O’Sullivan et al. (2004)

sph simulation
SPH Simulation
  • Inclined dipole field: include magnetic force in SPH code (NOT MHD!)
  • Need B = 2 kG, at latitude q = 65 (see also Terquem & Papaloizou)
summary future research
Summary & Future Research
  • Monte Carlo: self-consistent disk structure calculations
  • GM Aur: Disk-planet interaction, need Spitzer SEDs
  • AA Tau: SED model for disk structure Warped disk for photopolarimetry SPH: dipole B = 2 kG, at latitude q = 65
  • Coding: Radiation pressure Include gas opacity Transiently heated grains
  • Goal: merge radiation transfer & hydro
  • Codes now available at: http://gemelli.spacescience.org/~bwhitney/codes
disk dust grain growth
Disk Dust: Grain Growth

ISM

Disk dust

Dust Size Distribution:

Power law + exponential decay

Grain Sizes in excess of 50mm

Grayer opacity, Sub-mm slope ~ 1/l

Fits HH30, GM Aur, AA Tau

Beckwith & Sargent (1991): sub-mm continuum SEDs: k ~ 1/l

estimating r in from seds

T

6 AU

20 AU

300 AU

r1/5

GM Aur

Estimating Rin from SEDs
  • Hot inner edge emits in IR
  • Include inner edge emission when estimating Rin
slide22

GM Aur

Monte Carlo, Rin = 4 AU, i = 0 - 50

CG97, Rin = 0.1 AU

CG97, Rin = 4 AU

Vertical Hydrostatic Equilibrium

slide23

Monte Carlo

CG97

KH87

ALS87

Estimating Rin from SEDs

  • MC models include inner edge emission
  • Other models without inner edge emission
  • No 10mm excess MC: Rin > 10 AU CG: Rin ~ 2.5 AU
disk structure
Disk Structure

Walker et al. (2004)

slide25

D’Alessio: i = 60

MC: i = 63

MC: i= 60

SEDs

Walker et al. (2004)

comparison summary
Comparison Summary
  • MC: Disk slightly hotter at large radii Slightly more emission in 20-200mm
  • Differences: Radiation pressure Dust opacity Treatment of upper layers Non-isotropic scattering Radial transport in outer disk
ad