Jet dynamics stability and energy transport
This presentation is the property of its rightful owner.
Sponsored Links
1 / 33

Jet dynamics , stability and energy transport PowerPoint PPT Presentation


  • 75 Views
  • Uploaded on
  • Presentation posted in: General

Jet dynamics , stability and energy transport. Manel Perucho -Pla Universitat de València High Energy Phenomena in Relativistic Outflows III Barcelona - June 30th, 2011. Outline. Introduction The sub-parsec scales : CD instabilities .

Download Presentation

Jet dynamics , stability and energy transport

An Image/Link below is provided (as is) to download presentation

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.


- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -

Presentation Transcript


Jet dynamics stability and energy transport

Jet dynamics, stability and energy transport

ManelPerucho-Pla

Universitat de València

HighEnergyPhenomena in RelativisticOutflows III

Barcelona - June 30th, 2011


Jet dynamics stability and energy transport

Outline

  • Introduction

  • The sub-parsec scales: CD instabilities.

  • The parsec scales and beyond: KH instabilities.

  • Nonlineareffects.

  • Thelargestscales: energydeposition in theambient.

  • A global (and personal) view: why are jets so stable.


Jet dynamics stability and energy transport

Introduction

jet power

AGN

Carilli

FRII

FRI

A. Bridle’sgallery


Jet dynamics stability and energy transport

Introduction

jet power

AGN

Carilli

FRII

FRI

A. Bridle’sgallery


Jet dynamics stability and energy transport

Introduction

jet power

AGN

Carilli

FRII

FRI

A. Bridle’sgallery


Jet dynamics stability and energy transport

Introduction

S6 in NGC 7793

Pakull et al., Soria et al. 2010

MICROQUASARS

~20 sourceswithdetectedjetsinthegalaxy

(Massi ’05, Ribó ’05).

Cygnus X-1

Gallo et al. 2005

Migliari et al.

SS 433


Jet dynamics stability and energy transport

Introduction

Copy and paste from Phil Hardee’stalk at IAU 275 meeting (withpermission) .


Jet dynamics stability and energy transport

The sub-parsec scales: CD instability

Mizuno et al. (2009, 2010, seeposter)

Sub-Alfvénicregime

Rj = a/2: Jet flowsthroughkink

Rj = 4a: Kinkpropagateswiththeflow

The position of thevelocityshearwithrespecttothecharacteristicradius of the

magneticfield has animportanteffectonthepropagation of the CD instabilities .

CD INSTABILITY

Thereisanefficientconversion of energyfromthePoyinting flux toparticles.


Jet dynamics stability and energy transport

The sub-parsec scales: CD/KH

3D isovolume of density with B-field lines show the jet is disrupted by the growing KH instability

Longitudinal cross section

y

y

z

x

Transverse cross section

Mizuno et al. 2007

Non-relativistic: Hardee & Rosen 1999, 2002:

Helical B fieldstabilizesthe jet (magnetictension).


Jet dynamics stability and energy transport

The parsec scales and beyond:

KH instability

Peruchoet al. (2004a, 2004b)

Initialmodel

  • Parameters:

    • Lorentz factor.

    • Rest-massdensitycontrast.

    • Specificinternalenergy.

    • Pressureequilibrium.

Linear phase


The parsec scales and beyond kh instability

The parsec scales and beyond: KH instability

Axial velocitypert.

Pressurepert.

SATURATION

Perp. velocitypert.

  • -KH instabilitiessaturatewhentheamplitude of theperturbation of axial velocity (in the jet referenceframe) reachesthespeed of light (Hanasz 1995, 1997).


Jet dynamics stability and energy transport

The parsec scales and beyond:

KH instability

Peruchoet al. 2005, 2007

TIME

Sheared jet (d=0.2 Rj)

Lorentz factor 20

Sheared jet (d=0.2 Rj)

Lorentz factor 5

Seealso short λsaturation (Hardee 2011)


Jet dynamics stability and energy transport

The parsec scales and beyond:

KH instability

  • UST1: efficientlymixed and sloweddown.

  • UST2: progressivemixing and slowing.

  • ST: resonantmodesavoiddisruption and generate a hotshearlayerthatprotectsthefastcore.


Jet dynamics stability and energy transport

The parsec scales and beyond:

KH instability

Peruchoet al. 2005

  • Shearlayer (mean profiles of variables).

    • Upperpanels: thermodynamical variables.

    • Lowerpanels: dynamical variables.

UST1

UST2

ST

specific internal energy

tracer

rest mass density

Axial velocity

Norm. Lorentz factor

Norm. Axial momentum


Jet dynamics stability and energy transport

The parsec scales and beyond:

KH instability

cold

hot

Lorentz factor

cold

  • 3D RHD simlations of jet stabilityusing RATPENAT.

  • 5123 =1.342 108 cells

  • 128 processors

  • 21-28 days

Peruchoet al. 2010


Jet dynamics stability and energy transport

The parsec scales and beyond:

KH instability

Axial momentum in the jet material versus time

75 %

< 10 %

  • 3D RHD simlations of jet stabilityusing RATPENAT.

  • 5123 =1.342 108 cells

  • 128 processors

  • 21-28 days

Peruchoet al. 2010


Jet dynamics stability and energy transport

The parsec scales and beyond:

KH instability

Overpressured jet

standing shocks

Agudo et al. 2001

KH pinchinginstabilitiestriggeredby

aninjectedperturbation.

Differentstructuresmayappear

at differentfrequencies in jets

with transversal structure.

Perucho et al. 2006


Jet dynamics stability and energy transport

The parsec scales and beyond:

KH instability

3C120 Gómez et al. 2000

3C111 Kadler et al. 2008


Jet dynamics stability and energy transport

The parsec scales and beyond:

KH instability

Overpressured jet

standing shocks

Agudo et al. 2001

KH pinchinginstabilitiestriggeredby

aninjectedperturbation.

Differentstructuresmayappear

at differentfrequencies in jets

with transversal structure.

Perucho et al. 2006


Jet dynamics stability and energy transport

The parsec scales and beyond:

KH instability

0836+710: Perucho et al., in preparation


Jet dynamics stability and energy transport

Non-linear effects

Instabilitieswithlargeamplitude:

Rossi et al. 2008

Recollimation shocks:

Perucho & Martí 2007


Jet dynamics stability and energy transport

Non-linear effects

Shockedwind

SNR

Shocked ISM

ISM

Bosch-Ramon, MP, Bordas 2011

Shockedwind

Shocked ISM

ISM

Inhomogeneousambientmedium

Meliani & Keppens 2008


Jet dynamics stability and energy transport

Non-linear effects

Wind-jet interaction in massive X-raybinaries

6 1011 cm ~ 0.04 AU

Image: NASA/ESA

wind from the star

y

2 1012 cm

~ 0.13 AU

x

6 1010 cm

~ 0.004 AU

z

Rorb ~ 2 1012 cm


Jet dynamics stability and energy transport

Non-linear effects

Wind-jet interaction in massive X-ray binaries:3D simulations

Perucho, Bosch-Ramon & Khangulyan 2010

t = 977 s

Pj= 3 1036erg/s

Pj= 1037erg/s

t = 192 s


Jet dynamics stability and energy transport

Non-linear effects

Wind-jet interaction in massive X-raybinaries:3D simulations

Perucho& Bosch-Ramon, in preparation

Inhomogeneouswind. Pj= 3 1036erg/s

Inhomogeneouswind. Pj= 1037erg/s


Jet dynamics stability and energy transport

The largest scales:

Energy deposition in the ambient

  • MS0735+7421 (McNamara et al. 2005).

  • 200 kpcdiametercavities.

  • Shock-wave (M=1.4).

  • pV=1061 erg.

  • T=108yr.

  • Ps=1.7 1046 erg/s (frompV).


Jet dynamics stability and energy transport

The largest scales:

Energy deposition in the ambient

  • 2D axisymmetrichydrosimulationswithRATPENATusing up to 140 processors (added as the jet grows) duringmonths... ≈106computationalhoursforthewholeproject.

    • Jets injected at 1 kpcinto a King-profilefordensity (Hardcastle et al. 2002, Perucho & Martí 2007) in hydrostatic.

      • CorrespondingDarkMatterdistribution of 1014 MΘwithin 1 Mpc.

    • Powers: 1044 erg/s (J3 - leptonic) – 1045 erg/s (J1 –leptonic, J4 - baryonic) – 1046 erg/s (J2 - leptonic).

      • Jet radius: 100 pc. Jet velocity: 0.9 – 0.99 c

    • Injectedduring16 to 50 Myr. Thesimulations reproduce the jet evolution up to200 Myr.

    • Resolution: 50x50 pcor 100x100 pc per cell in the central region (Total 16000x2000 cells, 800 /900 kpc x 500 kpc).


Jet dynamics stability and energy transport

The largest scales:

Energy deposition in the ambient

200 Myr

1046 erg/s

Perucho et al. 2011, submitted


Jet dynamics stability and energy transport

The largest scales:

Energy deposition in the ambient

Perucho et al. 2011, submitted

Red: ambient.

Blue: jet.

M≈30

>1011 MΘof shockedambient gas.

Vbs= 0.044 – 0.1 c

Ourparameters

(consistent)

Mbs= 10 – 30

Martí et al. (1997)

Usual parameters in

newtoniansimulations

Vbs= 0.009 – 0.015 c

Mbs= 3 – 5


Jet dynamics stability and energy transport

The largest scales:

Energy deposition in the ambient

1046 erg/s

Schlierenplot: enhanceddensitygradients.


Jet dynamics stability and energy transport

The largest scales:

Energy deposition in the ambient

1044 erg/s


Jet dynamics stability and energy transport

A global (and personal) view:

Why are jets so stable

  • Initialexpansionphase: the jet generates a bow-shock and itissurroundedbymixed jet and ambient material.

    • Implicationswrtinstabilities.

  • Nonlinearprocesses can affect jet stability:

    • Reconfinement shocks.

    • Inhomogeneities in theambientmedium.

    • Changes at injection (perturbations).

    • Massloadingbystellarwinds and directinteractionwiththeambientmedium.

  • Jets are notstable!!!!


Jet dynamics stability and energy transport

A global (and personal) view:

Why are jets so stable

  • BUT Somestabilizingmechanisms:

    • Certainconfigurations of themagneticfield (helicalfield).

    • Saturationduetorelativisticlimit.

      • Short λsaturation.

      • Resonantmodes.

    • Pressureconfinement (temporal).

  • Energy and momentum are conserved!

    • The jets thatwesee at thelargestscalescouldbetheresult of a series of non-linear processes, involvingstrongchanges in theircomposition.


  • Login