1 / 1

Vibrational power flow analysis of nonlinear dynamic systems and applications Jian Yang. Supervisors: Dr. Ye Ping X

Fluid Structure Interactions Research Group. Vibrational power flow analysis of nonlinear dynamic systems and applications Jian Yang. Supervisors: Dr. Ye Ping Xiong and Prof. Jing Tang Xing Faculty of Engineering and the Environment, University of Southampton, UK . j ian.yang@soton.ac.uk.

janet
Download Presentation

Vibrational power flow analysis of nonlinear dynamic systems and applications Jian Yang. Supervisors: Dr. Ye Ping X

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Fluid Structure Interactions Research Group Vibrational power flow analysis of nonlinear dynamic systems and applications Jian Yang. Supervisors: Dr. Ye Ping Xiong and Prof. Jing Tang Xing Faculty of Engineering and the Environment, University of Southampton, UK. jian.yang@soton.ac.uk Background ● Predicting the dynamic responses of complex systems, such as aircrafts, ships and cars, to high frequency vibrations is a difficult task. Addressing such problems using Finite Element Analysis (FEA) leads to a significant numerical difficulty. ● Power flow analysis (PFA) approach provides a powerful technique to characterise the dynamic behaviour of various structures and coupled systems, based on the universal principle of energy balance and conservation. ● PFA is extensively studied for linear systems, but much less for nonlinear systems, while many systems in engineering are inherently nonlinear or designed deliberately to be nonlinear for a better dynamic performance. Aims ● Reveal energy generation, transmission and dissipation mechanisms in nonlinear dynamic systems. ● Develop effective PFA techniques for nonlinear vibrating systems . ● Apply PFA to vibration analysis and control of marine appliances, such as comfortable seat and energy harvesting device design. Fig. 2 Nonlinear energy harvesting using a flapping foil[1] Fig. 1 Nonlinear seat suspension system Instantaneous power flow Fundamental PFA Theory Fig.5 shows the instantaneous input power flow of Duffing’s oscillator when it exhibits chaotic motion. The irregularity in input power pattern shown in Fig.5(a) results from the incorporated infinite frequency components which is demonstrated by Fig.5(b). Dynamic equation for a single degree-of-freedom system . (1) Equation of energy flow balance can be obtained by multiply both sides of Eq.(1) with velocity . (2) + + = Kinetic energy change rate Dissipated Power Potential energy change rate Instantaneous input power (a) (b) Fig.5 (a) Instantaneous input power and (b) frequency components in the input power of Duffing’s oscillator . (3) Time-averaged power flow Time averaged input power of the system can be employed to incorporate the effects of multiple frequency components in the response, which can expressed as Fig.6(a) shows the forced response of VDP oscillator may be either periodic or non-periodic for different excitation frequencies. In this situation, the time averaged input power provides a good performance indicator of input power level by using a long time span for averaging. It can be seen that the averaged input power value of VDP oscillator can be negative, which is different from that of linear systems. (4) Typical nonlinear dynamic systems Van der Pol’s (VDP) oscillator -Nonlinear damping Duffing’soscillator -Nonlinear stiffness These nonlinear systems behave differently compared with their linear counterparts as the former may exhibit inherently nonlinear phenomenon such as limit cycle oscillation, sub- or super- harmonic resonances , quasi-periodic or even chaotic motion. Their responses may also be sensitive to initial conditions when multiple solutions exist. Although their nonlinear dynamics have been extensively investigated. The corresponding nonlinear power flow behaviours remains largely unexplored. (a) (b) Fig.6 (a) Bifurcation diagram and (b) time averaged input power of VDP oscillator Future work 1. To study power flow behaviours of systems exhibiting inherent nonlinear phenomenon; 2. To develop effective power flow techniques for nonlinear systems; 3. Apply nonlinear power flow theory to vibration control as well as energy harvester design. Fig. 3 Limit cycle oscillation of VDP oscillator Fig. 4 Chaotic motion of Duffing’s oscillator. • Reference • [1] J.Yang, Y.P.Xiong and J.T.Xing, Investigations on a nonlinear energy harvesting system consists of a flapping foil and electro-magnetic generator using power flow analysis, 23rd Biennial Conference on Mechanical Sound and Vibration, ASME, Aug 28-31, Washington, US, 2011. FSI Away Day 2012

More Related