1 / 30

Nanostructured Polymer Solar Cells

2008 IEEE INTERNATIONAL RELIABILITY PHYSICS SYMPOSIUM April 29, 2008. Nanostructured Polymer Solar Cells. D. Xi, C. Shi, Y. Yao, Y. Yang, Q. Pei Materials Science and Engineering California NanoSystems Institute University of California, Los Angeles qpei@seas.ucla.edu. Polymer Solar Cell.

hua
Download Presentation

Nanostructured Polymer Solar Cells

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. 2008 IEEE INTERNATIONAL RELIABILITY PHYSICS SYMPOSIUM April 29, 2008 Nanostructured Polymer Solar Cells D. Xi, C. Shi, Y. Yao, Y. Yang, Q. Pei Materials Science and Engineering California NanoSystems Institute University of California, Los Angeles qpei@seas.ucla.edu

  2. Polymer Solar Cell Konarka • Efficiency of inorganic solar cells: ~10–20% • Current Polymer Solar Cell: ~5% • Max Inorganic: ~40% • No clean room or high T steps needed (large-area, low cost) • Flexible panels (form factor) • Versatility of polymer structure and property via synthesis • Nanostructural tailoring

  3. How Does It Work? Yu, Heeger, et al, Science, 270, 1789(1995)

  4. Mechanism and Efficiency ηIQE = ηA × ηED × ηCT × ηCC Stephen R. Forrest, MRS Bulletin, 30 (2005) p.28 VOC = D ( ELUMO – EHOMO – EExitonbinding)

  5. Mechanism and Efficiency RSH = Shunt resistance (quality of diode) RS = Series resistance (quality of contacts & transport in bulk of film) Stephen R. Forrest, MRS Bulletin, 30 (2005) p.28-32

  6. Main Factors Limiting the Efficiency: Low absorption H. Hoppe & NS Sariciftci, J. Mater. Res., Vol. 19, 1926 (2004)

  7. Main Factors Limiting the Efficiency: Short Exiton Lifetime Exciton diffusion length in ordered polymers is 5-14 nm A. Haugeneder, et al, Phys. Rev. B, 59(23), 15346: 1999 T. Stubinger and W. Brutting, J. APPL. PHYS., 90(7), 3632: 2001

  8. Bulk Heterojunction in Polymer Blend ITO Donor/Acceptor Blend (100+ nm) Al N.S. Sariciftci, Heeger, et al. S. Forrest, et al.

  9. Bulk Heterojunction Inganäs, et al, Adv. Mater., 13, 1871: 2001 Stalmach U. et al, J. Am. Chem. Soc.,122, 5464 (2000)

  10. O * * * * O A l k o x y P P V A l k y l P P V ( M E H - P P V ) Alkoxythiophene polymers? FETs Solar cells ?? P3HT+PCBM (200nm) • Alkoxy to alkyl: • Larger bandgap • Lower mobility • Less stable

  11. Synthesis of regioregular polymers and copolymers Shi, et al., J. AM. CHEM. SOC. 2006, 128, 8980-8986

  12. UV-Vis-NIR of spin-coated films O X O O X X O X O O X X O O O X O X X O O X

  13. P3OOT 1.91eV Al Energy Levels of Semiconductors Ca P3DOT PF-co-DTB 1.60eV 1.64eV 1.92eV 1.78eV ITO POT -co- DOT P3HT PCBM

  14. Solar Cell Structure A Al (80 nm) LiF (1 nm) Polymer/PCBM (80-100 nm) PEDOT:PSS (25 nm) ITO/Glass

  15. Characteristics of Bulk Heterojunction Cells (AM1.5G irradiation at 100 mW/cm2). Polymer Polymer:PCBM JscVoc (V) FF(%)PCE(%) (w/w ratio) (mA/cm2) P3DOT 1:1 0.140.0226.50.0007 POT-co-DOT1:10.600.2241.20.054 PF-co-DTB2:10.740.8325.50.16 PF-co-DTB1:12.92 0.78 32.8 0.74 PF-co-DTB1:2 4.000.7644.61.27 PF-co-DTB1:4 4.310.7648.6 1.60

  16. IPCE plot of PF-co-DTB/PCBM (1:4) BH cells Shi, et al., J. AM. CHEM. SOC. 2006, 128, 8980-8986

  17. C60 PCBM vs C70 PCBM Y. Yan, et al., APL 89, 153507 (2006)

  18. Absorption of PF-co-DTB/[70]PCBM blends Y. Yan, et al., APL 89, 153507 (2006)

  19. AFM of PF-co-DTB/PCBM blends Tapping mode Phase mode PF-co-DTB: 1 [60]PCBM: 4 PF-co-DTB: 1 [70]PCBM: 4

  20. Cell performance vs. PCBM concentration

  21. IV Characteristics of polymer/PCBM BH cells

  22. EQE of polymer/PCBM BH cells Y. Yan, et al. APL 89, 153507 (2006)

  23. Other Small Eg Polymers

  24. 7nmx7nm 7nmx60nm Bulk Heterojunction in Nanorod/Polymer Blend (Huynh W.U., Science 295,2425, 2002)

  25. Bulk Heterojunction in Porous TiO2 / Polymer Sintering TiO2 nanocrystals + P3HT Quantum efficiency only 6% Due to incomplete filling and random distributed inferface Well ordered 8nm pore TiO2 film + P3HT Incomplete PL quench due to twist of polymer into 8nm pores; optimized infiltration depth 20nm, QE, 10%, power efficiency 0.45% (Kevin M. Coakley, Adv. Funct. Mat 13, 301, 2003)

  26. Bulk Heterojunction Based on CuPc Nanowires PCE FF Voc CuPc nanowires by CVD. Scale bar: 500 nm ITO / CuPc / PTCBI / BCP / Ag Power efficiency 2.7% (Fan Y., Nature Materials 4, 37, 2005)

  27. Au p-Conjugated polymer top electrode n-semiconductor ITO/PEDOT transparent electrode Interdigitated p-n Nanohybrid Diameter ~20nm, Height ~200nm Space between rods ~20nm • Two bicontinuous phases, effectively split exciton before recombination • Carriers have straight pathway to electrodes • Prevent holes from reaching the negative electrode and electrons from positive electrodes

  28. b Interdigitated p-n Nanohybrid: Polymer nanotube array a 500 nm b c 1 mm d e 100 nm Xi et al. Nanotechnology 18 (2007) 095602

  29. Interdigitated p-n Nanohybrid: CdS Nanorod array 500 nm CdS + P3HT by infiltration CdS + PT by electropolymn

  30. Summary • Alkoxythiophene is a useful building block for highly-conjugated, low bandgap (co)polymers. • BH solar cells based on PF-co-DTB and [70]PCBM: • Jsc: 6.34mA/cm2 • Voc: 0.76V • FF: 50.5% • PCE: 2.4% • More work is needed to improve mobility and band edge matching (PF-co-DTB: mh = 2x10-5cm2/Vs) • Interdigitated p-n nanohybrid is a good architecture but challenging to fabricate perfect nanostructure/material

More Related