1 / 54

CH 1- Law of Indices

CH 1- Law of Indices. +. . =. m. n. m. n. a. a. a. m. a. -. =. m. n. a. n. a. =. 0. a. 1. =. 1. a. a. =. m. n. mn. (. a. ). a. Solve for x. 3(2 k )-2 k-1 =40 3(2 k )-2 -1 (2 k )=40 2 k (3-1/2)=40 2 k =16 2 k =2 4 k=4. =. n. n. n. (. ab. ). a.

hillf
Download Presentation

CH 1- Law of Indices

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. CH 1- Law of Indices +  = m n m n a a a m a - = m n a n a = 0 a 1 = 1 a a = m n mn ( a ) a Solve for x 3(2k)-2 k-1=40 3(2k)-2 -1(2 k)=40 2k(3-1/2)=40 2k=16 2k=24 k=4 = n n n ( ab ) a b n a a = n ( ) n b b Simplify Simplify Solve for x

  2. Scientific Notation =   < n N d 10 where 1 d 10 , d is a decimal integer n is an Express the following in scientific notation without calculator (a) 2 750 000 000 (b) 0.000 000 137c) 4.7  1012 – 5.2  109

  3. Denary System (base 10) (0,1,2,3,4,5,6,7,8,9) =  +  +  +  +  4 3 2 1 0 abcde a 10 b 10 c 10 d 10 e 10 Binary System (base 2) (0,1) to Denary =  +  +  +  +  4 3 2 1 0 abcde a 2 b 2 c 2 d 2 e 2 Hexadecimal System (base 16)(0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F) to Denary =  +  +  +  +  4 3 2 1 0 abcde a 16 b 16 c 16 d 16 e 16

  4. Denary to Binary System 2 2 2 2 2 27 ........ 1 13 ........ 6 1 ........ 0 3 ........ 1 1 16 16 16 16 16 958521 ........ 1 0 ........ 9 59907 ........ 3 3744 ........ 0 234 ........ A 14 ........ E 0 Denary to Hexadecimal System

  5. CH 2- Percentages - New value Original Value % change =  100 % Original Value M % N % = +  - k ( 1 ) ( 1 ) 100 100 A value V increases by M% and then decrease by N%, find the % increase/decrease in V Example 1 Salary increases by 10% and then decrease by 10%, find % increase/decrease in salary Example 2 Salary increases by 10% and then decrease by 5%, find % increase/decrease in salary

  6. Simple Interest I = PRT A=P(1+RT) P P(1+R1) P(1+R2) P(1+RT) PR PR PR I=PRT For example : Principal = 1000, interest rate p.a. = 10%, years = 3 1000(1+0.11) =1100 1000(1+0.12) =1200 1000(1+0.13) =1300 1000 1000 0.1=100 100 100 I=10000.1 3 =300

  7. Compound Interest I = P(1+R)T-P A=P(1+R)T P P(1+R)1 P(1+R)2 P(1+R)T PR P(1+R)1 R P(1+R)2 R I=P(1+R)T-P 1000(1+0.1)1 =1100 1000(1 + 0.1)2 =1210 1000(1 + 0.1)3 =1331 1000 1000 0.1=100 1210 0.1=121 1100 0.1=110 I=1000(1+0.1)3-1000 =331

  8. CH 3 Factorization +  + + 2 2 2 ( x y ) x 2 xy y + +  + 2 2 2 x 2 xy y ( x y ) -  - + 2 2 2 ( x y ) x 2 xy y - +  - 2 2 2 x 2 xy y ( x y ) + -  - 2 2 -  + - ( x y )( x y ) x y 2 2 x y ( x y )( x y ) -  - + + 3 3 2 2 x y ( x y )( x xy y ) +  + - + 3 3 2 2 x y ( x y )( x xy y ) + +  + + 2 2 Ax Bx C ( dx p )( fx q ) + = = = where pf dq B , df A , pq C + +  + + 2 2 Ax Bxy Cy ( dx py )( fx qy ) + = = = where pf dq B , df A , pq C Expansion Factorization of quadratic equation in 1 variable Factorization of quadratic equation in 2 variables

  9. Factorize x3+64 15x2-41x+28 5+2x-3x2 x4-16y4 x2-6x+5 –3xy+28x2-y2 (a+3) 2+13(a+3)(2a-1)+40(2a-1) 2 3ab-18xy-6ax+9by (x-y)2+2(x-y)+1 8x3+729y3 (x+9)2-25 (x3-y3)+(x2y-y2x) x2-y2+4x+8y-12 If x2+y2=m, x-y=n, find xy Simplify

  10. CH 6- Central Tendency Sum of all the data = Mean Number of Data Arrange n data in ascending / descending order = term if n is odd , Median middle = if n is even , Median the mean of 2 middle terms The mod e of a set of data is the item with the highest frequency

  11. Length of arc = x r h r h h A A h r l r r Area of arc = Surface area of the cylinder = volume of the cylinder = volume of a prism or a cylinder = volume of a pyramid = volume of a cone = Curved surface area of a right circular cone = Volume of a sphere = Surface area of a sphere =

  12. Example 1 = + = + = + = = 2 2 2 2 AG AO OG 12 5 144 25 169 13 = + = + = + = = 2 2 2 2 AF AO OF 12 9 144 81 225 15 A Surface of Area =Area of base + the sum of areas of all sides =Area BCDE + 2 (area of ABC+area of ACD)   BC AF CD AG =  +  + BC CD 2 ( ) 12 2 2   10 15 8 13 =  +  + 10 8 2 ( ) E D 2 2 = + + 80 75 72 O G 18 = 2 F 227 cm B C 10 Volume Pyramid =

  13. Example 2 E 6 A 4 C O 600 4 4 D B Base triangle area = Volume area = Surface of Area =Area of base + the sum of areas of all sides =Area of ABC + 3 (area of BCE)

  14. Example 3 A F 6 12 H 4 12 E D 18 O C B G OF=4 cm. BCDE is a rectangle. Find the volume of the frustum.

  15. Example 3 A F 6 12 H 4 12 E D 18 O C B G OF=4 cm. BCDE is a rectangle. Find the surface area of the frustum.

  16. For 2 similar objects 1 and 2 Ex 1. Radius of a sphere doubled, find the % increase in Area. Ex 2. Original area is 40 cm2. If radius of a sphere doubled, find the new area.

  17. CH 9- Trigonometry BC AC BC B = = = sin cos tan q q q BA AB AC 300 600 450 q A C sin cos tan

  18. B Gradient q sin = BC AC q tan = = gradient 1 : q cos AC BC + = 2 2 q q sin cos 1 BC q tan q = = - 2 2 sin 1 cos q A q C AC = - 2 2 cos 1 sin q q A angle of depression of B from A - = 0 cos( ) sin 90 q q - = 0 sin( 90 q ) cos q 1 - = 0 tan( ) q angle of elevation of A from B 90 B q tan Angle of inclination  Angles of elevation and depression

  19. Compass Bearing True Bearing N N P P   W O O E   Q Q S Measured from N or S towardsE or W. Measured clockwise from N only e.g. P from O =  e.g. Q from O =  e.g. P from O = N  E e.g. Q from O = S W

  20. CH 5 –DEDUCTIVE GEOMETRY x x y y A A B B x + y = 1800 AB is a straight line (adj.  s supp.) AB is a straight line x + y = 1800 (adj. s at st. line) ISOSCELES TRIANGLE A A x y x y B C B C x=y (given) AB=AC AB=AC (given) x=y (sides opp.eq. s) (base s, isos. )

  21. a+ b +c = 1800 ( sum of ) a c b c b a a b a c b a + b + c = 3600 (s at a pt.) (vert. opp. s) a = b a + b = c (ext.  of )

  22. CH 10 –DEDUCTIVE GEOMETRY a a A B A B A B a b b b C C C D D D A B a b C D a = b (given) AB // CD (alt. s eq.) AB // CD (given)a = b (alt. s, AB // CD) a = b (given) AB // CD (corr. s eq.) AB // CD (given) a = b (corr. s, AB // CD)

  23. A B A B a a b b C C D D AB // CD EF // CD AB // EF A B D C F E a + b = 1800AB // CD (int. s supp.) AB // CD (given) a + b = 1800 (int. s, AB // CD) (transitive property of // lines)

  24. Prove the BE is the angle bisector of ABC . A E D  B C A E D B C Proof: Draw BEBD=DE (given)DBE =DEB(base s, isos. )DEB =EBC(alt s, DE//BC)DBE =EBC BE is the angle bisector of ABC .  

  25. Congruent Triangles D D A A D A A D C F C C F F C F E E B B B E E B (given) ABC  DEF  (corr. sides, s) AB = DE AC = DF BC = EF (given) ABC  DEF  (corr. s,   s) ABC = DEF BAC = EDF ACB = DFE AB = DE (given) AC = DF (given) BC = EF (given)  (S.S.S.) ABC  DEF AB=DE CA=FD BAC= EDF  ABC  DEF  (S.A.S.)

  26. Congruent Triangles A D A D D F C F C F E E B B E D A C F B E BAC= EDF (given) AB=DE (given) ABC= DEF (given)  ABC  DEF(S.A.S.)  BAC= EDF (given) ABC= DEF (given) AC=DF (given)  ABC  DEF(A.A.S.) A C  B BAC=EDF= 900 (given) AC= DF (given) BC=EF (given) ABC  DEF (R.H.S)   ABC not necessary  DEF

  27. Similar Triangles A A D D C C F F E E B B AB BC CA = = AB BC CA DE EF FD = = = k k , k DE EF FD  (given) ABC DEF  (corr. sides,  s)   (3 sides prop.) ABC DEF

  28. (given) ABC DEF A A A D D D C C C F F F E E E B B B  ABC=DEF BCA=EFD (corr. s,  s) CAB=FDE  ABC=DEF (given) BAC=EDF (given)  (AA) ABC DEF  ABC=DEF (given) BCA=EFD (given) CAB=FDE (given)  (AAA) ABC DEF

  29. A A ABC DEF (given) D D C C F F AB BC = DE EF E E B B AB BC = DE EF  ABC=DEF   ABC=DEF (ratio of 2 sides, inc. ) ABC DEF

  30. CHAPTER 11 - QUADRILATERALS Kite 2 pairs of eq adj sides Definition 1 diagional is axis of symmetry 2 diagionals are  Properties Trapeziums 1 pair of // sides Definition a c a+b=1800 ,c+d=1800 Properties b d

  31. Parallelogram 2 pairs of opp. // sides Definition Properties (opp. sides of // gram) (opp. s of // gram) Properties Properties (diag. of // gram)

  32. Conditions for Parallelogram B C D A B A B D C O D C A B C D A AB = DC (given) AD = BC (given) (opp. sides eq.) ABCD is a // gram ABC = ADC (given) DAB = DCB (given) (opp. s eq.) ABCD is a // gram AO = OC (given) DO = OB (given) ABCD is a // gram (diag. bisect each other) AB = DC (given) AB // DC (given) (opp. sides eq. and //) ABCD is a // gram

  33. In quadrilateral ABCD, AB=DC, ABC and BCD are equal but not equal to 900. Prove that AD//BC . D A B C A D ( opp . . eq . and //) sides B E C Method 1 AE // DC ( constructi on ) Ð Ð = Ð ( corr . s , AE // DC ) AEB DCE In ABE , D Ð = Ð ABE DCE ( given ) \ Ð = Ð ABE AEB \ = Ð AB AE ( sides . opp . eq . s ) = Q AB DC ( given ) \ = AE DC AE // DC and AE = DC Q \ AECD is a // gram n of // gram ) ( definitio \ AD // EC

  34. In quadrilateral ABCD, AB=DC, ABC and BCD are equal but not equal to 900. Prove that AD//BC . D A Draw AE  BC and DF  BC In ABE and DCF, AEB = DFC =900 (given) ABC =BCD (given) AB=DC (given) ABE  DCF (A.A.S) AE=DF (corr. sides,  s) AEB = DFE =900 AE//DF (corr. s eq) AE=DF and AE//DF ADEF is a // gram (opp. sides eq and //) AD//EF (definition of parallogram) AD//BC Q B C \ Q \ Q \ \ \ Method 2 A D F B C E

  35. A D Given ABCD is a // gram.Prove BPDQ is a // gram Q P B C Method 1 ∵ BQP=DPQ=900(given) ∴BQ//DP (alt. s eq.) In  ABQ and  CDP, AB=CD (opp.sides of // gram) BAQ=DCP (alt s ,AB//DC) BQA=DPC=900(given) ∴  ABQ  CDP (A.A.S.) ∴ BQ=DP (corr.sides, s) ∴BPDQ is a parallelogram (opp sides eq. And //)

  36. Given ABCD is a // gram.Prove BPDQ is a // gram A D Q P B C Method 2 In  ABQ and  CDP, ∵ AB=CD (opp.sides of // gram) BAQ=DCP (alt s ,AB//DC) BQA=DPC=900(given) ∴  ABQ  CDP (A.A.S.) ∴ BQ=DP (corr.sides, s) ∴ AQ=CP (corr.sides, s) In  ADQ and  CBP, ∵ AD=BC (opp.sides of // gram) DAQ=BCP (alt s ,AD//BC) AQ=CP(proof) ∴  ABQ  CDP (S.A.S.) ∴ DQ=BP (corr.sides, s) ∵ BQ=DP and DQ=BP (proof) ∴BPDQ is a parallelogram (opp. sides eq.)

  37. Given ABCD is a // gram.Prove BPDQ is a // gram A D Q O P B C Method 3 ∵ BQO=DPO=900(given) ∴BQ//DP (alt. s eq.) In  BQO and  DPO,∵ BQP=DPQ=900(given) QOB=POD (vert. opp. s) BO=DO (diag. of // gram ABCD)∴  BQO  DPO (A.A.S.) ∴ QO=PO (corr.sides, s) ∵ BO=DO and QO=PO ∴BPDQ is a parallelogram (diag. bisect each other)

  38. Given ABCD is a // gram. Prove BPDQ is a // gram A D Q O P B C Method 4 In  ABQ and  CDP, ∵ AB=CD (opp.sides of // gram) BAQ=DCP (alt s ,AB//DC) BQA=DPC=900(given) ∴  ABQ  CDP (A.A.S.) ∴ BQ=DP (corr.sides, s) In  BQP and  DPQ,∵ QP=QP (common) QOB=POD (vert. opp. s) BQ=DP (proved)∴  BQP  DPQ (S.A.S.) ∴ QBP=PDQ (corr .s, s) PQD =QPB(corr .s, s)∵ BQP =DPQ=900(given ) BQD= BQP+ PQD = QPB+ DPQ= DPB ∵ QBP=PDQ and BQD= DPB ∴BPDQ is a parallelogram (opp. s eq.)

  39. Rhombus A B D C A B D C A B 450 a // gram/a kite of 4 equal sides Definition Diagonals bisects each interior angle Properties Diagonals are  each other Rectangle a // gram of 4 right angles Definition Diagonals are equal AC = BD Properties Square a // gram of 4 right anglesand 4 equal sides Definition Diagonals are  Properties Angles between one diagonal and each side is 450 C D

  40. MID-POINT THEOREM A M N 1 = MN BC 2 B C A M N B C AM = MB (given) AN = NC (given) MN//BC (mid-point theorem) INTERCEPT THEOREM MN//BC (given) AN AM (intercept theorem) = NC MB

  41. Prove PBQR is a // gram CR=RA (given) CQ=QB (given) 1 ∴ = ( RQ AB mid pt theorem ) 2 = PB C = ( given ) AP PB = ( given ) AR RC R Q 1 ∴ ( mid pt theorem ) = RP CB 2 = BQ A P B  PBQR is a // gram (opp. sides eq.)

  42. Prove that AN= NC A AM = MB (given) M N (given) MN//BC AN AM (intercept theorem) = B C NC MB AN MB = NC MB AN 1 = NC 1 AN = NC

  43. A B Prove that AB+EF=2CD. C D AS BD AC = = = 1 (intercept theorem) SF DF CE E F A B S C D 1 1 = = SD CS EF AB 2 2 E F Draw a line AF, cutting CD at S. AC  CE (given) AB // CD // EF (given) ∴ ∴AS  SF and BD  DF In AEF AS  SF(Proved) AC=CE (given) ∴ (mid-point theorem) ∴ EF = 2CS In ABF AS  SF(Proved) BD=DF (proved) ∴ (mid-point theorem) ∴ AB = 2SD ∴AB+EF =2SD +2CS =2(SD+CS) =2 CD

  44. CHAPTER 12 – coordinate geometry = - + - 2 2 AB ( h f ) ( g e ) or = - + - 2 2 AB ( f h ) ( e g ) - - h f f h = = m or m AB AB - - g e e g Distance Formula B(g,h) A(e,f) Slope of a line B(g,h) A(e,f) Parallel Lines D(k,l) mAB =m CD AB // CD C(i,j) AB // CD mAB =m CD

  45. AB CD Perpendicular Lines = - m m 1 C(i,j) x B(g,h) AB CD = - m m 1 x A(e,f) AB CD AB CD D(k,l) Point of Division – coordinates of mid point + + e g f h B(g,h) C ( , ) A(e,f) C(i,j) 2 2 n m + + ne mg nf mh C ( , ) + + m n m n A(e,f) C(i,j) B(g,h) Point of Division – Internet point of division

  46. LINEAR EQUATION L: x=D Y Y mL=0 L: y=C C X X D mL=undefined L: y=mx+C Y mL>0 C X L: y=mx+C Y mL<0 C X

  47. Two Point Form – 2 points are given. - - - - y d b d y b b d = = - - - - x c a c x a a c or (a,b) Y or or (c,d) X Line Equation : Ax+By=E Example (4,5) Y (-2,3) X

  48. Point Slope Form – 1 point and a slope are given. - = - y b k ( x a ) m= Find x intercept Let the point be (0,d) d-b=k(0-a) d =bak (a,b) Y m=k X Line Equation : Ax+By=E Example (4,5) Y X

  49. Y intercept Form – slope (m) and y intercept (c) are given. = + y mx c Find x intercept Let the point be (0,d) y=mx+c 0=md+c Y m c X Example Y m= X

More Related