1 / 121

Carrots, Alkenes, and the Chemistry of Vision

Carrots, Alkenes, and the Chemistry of Vision. 11. 1. 12. 5. 15.

hija
Download Presentation

Carrots, Alkenes, and the Chemistry of Vision

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Carrots, Alkenes, and the Chemistry of Vision

  2. 11 1 12 5 15

  3. Folk medicine has long held that eating carrots is good for your eyes. Although that’s probably not true for healthy adults on aproper diet. there’s no question that the chenmistry of carrots and the chenmistry of vision are related. Carrots are rich in β- carotene, a purple-orange alkene that is an excellent dietary source of vitamin A. β- carotene is converted to vitamin A by enzymes in the liver, oxidized to an aldehyde called all-trans-retional, and then isomerized by a change in geometry of the C11-C12 doubie bond to produced 11-cis- retinal, the light-sensitive pigment on which the visual systems of all living things are basd on.

  4. There are two types of light-sensitive receptor cells in the retina of the human eye, rod cells and cone cells. The three milliion or so rod cells are primarily responsible for seeing in dimlight, whereas the hundred million cone cells are responsible for seeing in bright light and for the percep- tion of bright colors. In the rod cells of the eye, 11-cis-retinal is converted into rhodopsin, a light-sensitive substance formed from the protein opsin and 11- cis- retinal. When light strikes the rod cells, isomerization of C11-C12 double bond occurs and trans-rhodopsin, called metarhodopsin II , is produced. This cis-trans isomerization of rhodopsin is accompanied by a change in molecular geometry, which in Turn causes a nerver impulse to be sent to the brain where it is perceived as vision.(In the absence of light, the cis-trans isomerization takes approximately 1100 years; in the presence of light, it occurs 2×10 -11 seconds!)

  5. Metarhodopsin II is than recycled back into rhodopsin by a multistep sequence involving cleavage to all-trans-retinal and cis-trans isomerization back to 11-cis –retinal.

  6. §7 炔烃和二烯烃 基本要求 1 炔烃的性质(烯炔的加氢、加卤、库切列洛夫反应、部分氢化) 2 烯炔的命名;炔烃的制备; 3共轭二烯的特性反应(Diels-Alder反应,1,4- 1,2-加成); 4共振式的写法; 5丙二烯,共轭二烯的结构。

  7. §7.1 炔烃的结构、命名和物理性质 1 炔烃的结构 事实 解释:SP杂化

  8. SP杂化轨道 乙炔分子中的б键示意图:

  9. 乙炔π形成示意图:

  10. 2、炔烃的命名 (1) 炔烃的命名法和烯烃相似,只将"烯"字改为"炔"。 几个重要的炔基 HC C- CH3C C- HC CCH2- 乙炔基 1-丙炔基 2-丙炔基 ethynyl 1-propynyl 2-propynyl

  11. 不能叫:2-戊烯-4-炔 (2) 烯炔的命名 几个实例 CH3CH=CHC CH 3-戊烯-1-炔 3-penten-1-yne CHCCH2CH=CH2 1-戊烯-4-炔 1-penten-4-yne 规则:当分子中同时含有双键和叁键时: 选取含有双键和叁键的碳链为主链; 碳链编号要使烯、炔的位次之和最小; 当有选择时,优先使双键的位次最小。 书写时先列出烯,后列出炔。 CHCCH2CH=CHCH2CH2CH=CH2 4,8-壬二烯-1-炔 4,8-nonadien-1-yne (S)-7-甲基环辛烯-3-炔 (S)-7-methylcycloocten-3-yne

  12. 3 炔烃的物理性质 简单炔烃的沸点、熔点以及密度比碳原子数相同的烷烃和烯烃高一些(炔烃的沸点比对应的烯烃高10-20°C);炔烃分子极性比烯烃稍强。炔烃不易溶于水,而易溶于石油醚、乙醚、苯和四氯化碳中。

  13. §7.2 炔烃的化学性质 1 酸性 2 加XH 3 水合 4加卤素 5硼氢化-氧化 6氧化 7 氢化 8加醇、酸和氢氰酸 9聚合

  14. 1 末端炔烃的酸性、过渡金属炔化物及碱金属炔化物 (1) 酸性 R3C-H R3C- + H+ 碳氢键的断裂也可以看作是一种酸性电离,所以将烃称为含碳酸 含碳酸的酸性强弱可用pka判别, pka越小,酸性越强。 烷烃(乙烷)〈烯烃(乙烯) 氨 〈末端炔烃(乙炔)〈乙醇 〈水 pka ~50 ~40 35 25 16 15.7 酸 性 逐 渐 增 强 其 共 轭 碱 的 碱 性 逐 渐 减 弱

  15. (2 ) 过渡金属炔化物---端炔的鉴别方法 用于端炔与其它炔及烯烃的鉴别;也用于端炔的提纯。

  16. (3 ) 碱金属炔化物-----末端炔烃的卤化 用途:碱金属炔化物的重要用途是制备高级炔烃。 例: 卤代烃一般限于伯卤,仲卤和叔卤在该条件下主要发生消去反应。

  17. 练习: 合成:

  18. 2 加氢卤酸 讨论: ⅰ与不对称炔烃加成时,符合马氏规则。 ⅱ与HCl加成,现用氯化铵的醋酸溶液或汞盐和铜盐 做催化剂。 ⅲ 由于卤素的吸电子作用,反应能控制在一元阶段。 ⅳ 反式加成。 CH3CH2CCCH2CH3 + HCl 97%

  19. ⅴ与HBr既能发生亲电加成,又能发生自由基加成。ⅴ与HBr既能发生亲电加成,又能发生自由基加成。 过氧化物 RCCH + HBr RCH=CH2Br RCHBrCH2Br 过氧化物 ⅵ 机理为烯型碳正离子 乙烯型碳正离子的稳定性为: 所以加成产物符合Markovnikov规则。

  20. ⅶ 取代炔烃与卤化氢的加成活性顺序为: 3 炔烃的水合(库切列洛夫反应) 讨论: ⅰ 互变异构体:分子中因某一原子的位置转 移而产生 的官能团异构体;

  21. ⅱ机理:

  22. ⅲ产物遵从符合马氏规则。 ⅳ 乙炔乙醛, 末端炔烃甲基酮, 非末端炔烃两种酮的混合物 ⅴ用于把炔转变成酮。 例:

  23. 预测A和B水合反应的产物 练习: A

  24. B

  25. 4 加卤素 讨论:ⅰ机理与烯加卤相似,可停留在加1摩尔卤阶段; ⅱ加氯必须用三氯化铁催化(加速氯的亲电性); ⅲ 烯炔与1mol 卤素加成时,烯键优先加卤。

  26. 5 硼氢化-氧化反应 讨论:ⅰ硼氢化产物用酸处理得顺式烯烃(用于氘的引入); ⅱ对于端炔的硼氢化氧化产物与汞催化的炔烃水合互补。

  27. 例:

  28. 6 氧化反应 讨论:ⅰ烯炔氧化时,烯键优先氧化; ⅱ 稀冷高锰酸钾在低温可将炔氧化成1,2-二酮;

  29. 用臭氧氧化端炔得二氧化碳和酸,其它炔得酸, 根据氧化产物, 可推测炔烃的结构。 7 炔烃的还原与部分氢化 Lindlar catalyst

  30. 讨论:ⅰ 锂在液氨中的还原机理; ⅱ 炔烃的部分氢化用于烯烃构型的控制。 ⅲ 烯炔催化加氢时,炔键优先加氢. ⅳ应用举例:

  31. 例1

  32. 例2 例3

  33. 8.与HCN、EtOH、CH3COOH等的加成(亲核加成): 不对称炔烃亲核加成时,产物的区域选择性取决于 碳负离子的稳定性。 例:

  34. 用于氯丁橡胶的合成 9 聚合

  35. §7.3 炔烃的制备 1、由邻二卤代烷和偕二卤代烷脱卤化氢制备 讨论:ⅰ条件:氢氧化钾的乙醇溶液,加热; 或氨基钠的 液氨溶液或其矿物油(加热); ⅱ 卤代烃:1,2-二卤(邻二卤)或1,1-二卤(偕二卤) 或乙烯式卤。 ⅲ 三键有时移动。

  36. 例: CH3CHBr-CHBrCH3KOH-C2H5OH or NaNH2的矿物油 <100oCCH3CH2-CBr2CH3

  37. ⅳ 实用举例: 例1

  38. 例2 例3

  39. 2. 由1,1,2,2-四卤代烷脱卤 3. 由炔化物制备(参见§7.2) 练习: 1.The sex attractant given off by the common housefly is an alkene named muscalure . Propose a synthesis of muscalure starting from acetylene and anyalkyl hailides needed. What is the IUPAC name for muscalure?

  40. muscalure 炔键上2个烃基不同时,一般先引入体积小的烃基。

  41. 2 How would you prepare cyclodecyne starting from acetylene and any alkyl halide needed? 因炔烃的线性构型,环炔要足够大才可使其稳定存在, 目前制备的最小环炔是环辛炔。

  42. 3 ? 用于烯炔的制备。

  43. 4 端炔的氧化偶合(Eglinton reaction)

  44. §7.4 共轭作用(Conjugation) 1 共轭作用的定义 【实验事实1】

  45. [事实分析] Since a monosubstituted alkene such as 1-butene has We might expect that a compond with two monosubstituted double bondswould have a Approximately twice this value, or -252KJ/mol. Such as 1,4-pentadiene: meet this expection, but 1,3- butadiene does not. It is approximately 16KJ/mol more stable than expected. 2-Methyl 1,3-butadiene is 16KJ/mol more stable than expected also. For 1,3-butadiene: 126×2-236=16KJ/mol (126+119)-229=16KJ/mol for2-methyl 1,3-butadiene : 【结论】 2个π键共用1根б键的二烯烃比较稳定。 (与公用2根б键的二烯比较)。

  46. 【实验事实2】

  47. [事实分析] If we compare the length of carbon-carbon single bond in 1,3-butadiene(148pm) to that in ethane (154pm), We find that the 1,3-butadiene single bond is shorter by 6 pm and the length of carbon-carbon double bondin 1,3-butadiene(134pm) is longer by 1pm than that in ethene (133pm). 【结论】: 2个π键共用1根б键的二烯烃的单键变短,双键变长。 键长趋于平均化。 键长趋于平均化。

More Related