socio economic influences on self rated health trajectories evidence from four oecd countries
Download
Skip this Video
Download Presentation
Socio-economic influences on self-rated health trajectories: evidence from four OECD countries

Loading in 2 Seconds...

play fullscreen
1 / 25

Socio-economic influences on self-rated health trajectories: evidence from four OECD countries - PowerPoint PPT Presentation


  • 138 Views
  • Uploaded on

Socio-economic influences on self-rated health trajectories: evidence from four OECD countries. Amanda Sacker Peggy McDonough Diana Worts. Mplus Users Meeting Meeting 8 th June 2009. Background. The life course and the welfare state

loader
I am the owner, or an agent authorized to act on behalf of the owner, of the copyrighted work described.
capcha
Download Presentation

PowerPoint Slideshow about ' Socio-economic influences on self-rated health trajectories: evidence from four OECD countries' - gabby


An Image/Link below is provided (as is) to download presentation

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.


- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -
Presentation Transcript
socio economic influences on self rated health trajectories evidence from four oecd countries

Socio-economic influences on self-rated health trajectories: evidence from four OECD countries

Amanda Sacker

Peggy McDonough

Diana Worts

Mplus Users Meeting Meeting 8th June 2009

background
Background
  • The life course and the welfare state
    • Societies with weak social safety nets have worse population health than those with strong supports
    • Problem: based almost exclusively on aggregate, cross-sectional measurements of health
  • Comparative individual health dynamics and their social patterning
aims of study
Aims of study
  • Describe average national trajectories of self-rated health over a 7-year period
  • Identify socio-economic determinants of cross-sectional and longitudinal health
  • Compare cross-national patterns
welfare state typologies
Welfare state typologies
  • Esping Andersen (1990)
    • “three worlds of welfare”
    • decommodification, social stratification, private-public mix
    • liberal, conservative, social-democratic
  • Castles & Mitchell (1993)
    • 2 X 2 cross-classification
    • aggregate welfare expenditure, benefit equality
    • liberal, conservative, non-right hegemony, radical
the data
The data
  • Four panel surveys
    • US Panel Study of Income Dynamics
    • British Household Panel Survey
    • German Socio-Economic Panel Survey
    • Danish panel from the European Community Household Panel Survey
  • Respondents of working age throughout the follow-up period
  • Covariates measured in 1994
  • Health reported 1995-2001
methods
Methods
  • Latent growth curves
    • Linear growth curves by elapsed time controlling for age/age squared at baseline
    • Covariate effects on intercept and slope
  • Graphing health over time
    • Aging vectors
    • Synthetic cohort trajectories
  • Estimate health trajectories
    • Compound effect of covariates
the latent growth curve model
The latent growth curve model

. . . . . . . . . . . . . . .

SRH

1995

SRH

1996

SRH

2001

0

1

6

1

1

1

Slope

Intercept

Age

Gender

Ethnicity

Marital

status

Employ

status

Occup

class

Educ

Income

mplus syntax
Mplus syntax

VARIABLE:

NAMES ARE (omitted)

USEVARIABLES ARE srhth95 srhth96 srhth97 srhth98

srhth00 srhth01 rout94 missoc94 minority single94

excoup94 unempl94 outlf94 meded94 lowed94 female

agecen agesq logposp94;

MISSING ARE ALL (-999);

WEIGHT IS XRWGT94;

STRAT IS strata;

CLUSTER IS psu;

CATEGORICAL ARE srhth95 srhth96 srhth97 srhth98

srhth00 srhth01;

CENTERING IS GRANDMEAN (rout94 missoc94 minority

single94 excoup94 unempl94 outlf94 meded94 lowed94

female logposp94);

DEFINE:

agecen = agecen/10;

agesq = agecen^2;

ANALYSIS:

TYPE IS COMPLEX;

MODEL:

i s | [email protected] [email protected] [email protected] [email protected]

[email protected] [email protected];

i s ON rout94 - logposp94;

self rated health
Self-rated health
  • US

“Would you say [your/his/her] health in general is excellent, very good, good, fair, or poor?”

  • Britain

“Please think back over the last 12 months about how your health has been. Compared to people of your own age, would you say that your health has on the whole been excellent, good, fair, poor or very poor?”

  • Germany

“How would you describe your current health, very good, good, satisfactory, poor, bad?”

  • Denmark

“How is your health in general, very good, good, fair, bad, very bad?”

stata syntax
Stata syntax

** data file with one record for each synthetic birth cohort

** age centred on 40 years in 10 year units

** estimates imported from Mplus growth curve model

** calculate self-rated health in 1995 and 2001 for each birth cohort

gen srh_1 = -i_mean - (i_age*agecen + i_agesq*agecen^2)

gen srh_2 = -i_mean - (i_age*agecen + i_agesq*agecen^2) ///

- 0.6*(s_mean + s_age*agecen + s_agesq*agecen^2)

** figure with arrows from health in 1995 to health in 2001 for those aged 25-57 in 1994

gen age_1 = age

gen age_2 = age+6

graph twoway (pcarrow srh_1 age_1 srh_2 age_2), ///

xtitle(Age) ytitle("Predicted SRH Z-score", size(large)) ///

xtick(25(5)65) xlabel(25(5)65, labsize(large)) xtitle(,size(large)) ///

ytick(-1(.5).1) ylabel(-1(.5)1,angle(0) labsize(large)) ///

title("a) United States", size(vlarge)) legend(label(1 "1995 to 2001")) ///

saving("US aging vector.gph", replace)

socio demographic covariates
Socio-demographic covariates
  • Age
  • Gender
  • Ethnicity
  • Marital status
  • Education
  • Occupational class
  • Employment status
  • Income
intercept regressed on covariates
Intercept regressed on covariates

* p < 0.05 ** p < 0.005 *** p < 0.0005

slope regressed on covariates
Slope regressed on covariates

* p < 0.05 ** p < 0.005 *** p < 0.0005

aggregate effects
Aggregate effects
  • Average ideal type
    • Mean values for all covariates
  • Advantaged ideal type
    • Male, majority ethnic group, cohabiting, tertiary educated, employed, non-routine occupational class, above median income
  • Disadvantaged ideal type
    • Female, minority ethnic group, no longer living with partner, lower secondary education, unemployed, routine occupational class, below median income
substantive conclusions
Substantive conclusions
  • Socio-economic influences on trajectories of self-rated health broadly consistent with welfare typologies
  • Results suggest
    • Health of minority groups may be more affected by aggregate welfare expenditure
    • Work and health may be more affected by benefit equality
methodological conclusions
Methodological conclusions
  • Latent variable modelling cannot overcome differences in question wording and response labelling
    • Cannot make between-country comparisons about mean levels of health and rate of change
  • Ageing vectors useful for identifying cohort effects
discussion
Discussion
  • Causality?
    • Lack of relationship between covariates and changes in health
    • Common finding
  • Violations of measurement invariance
    • How far can anchoring vignettes help?
    • Other adjustment procedures?
ad