1 / 33

Cenke Xu 许岑珂 University of California, Santa Barbara

Interacting F ermionic and Bosonic Topological Insulators, possible Connection to Standard Model and Gravitational Anomalies. Cenke Xu 许岑珂 University of California, Santa Barbara. Outline:. Outline:

fiona-cash
Download Presentation

Cenke Xu 许岑珂 University of California, Santa Barbara

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Interacting Fermionic and Bosonic Topological Insulators, possible Connection to Standard Model and Gravitational Anomalies CenkeXu 许岑珂 University of California, Santa Barbara

  2. Outline: Outline: Part 1: Interacting Topological Superconductor and Possible Origin of 16n chiral fermions in Standard Model Part 2: Gravitational Anomalies and Bosonic phases with Gapless boundary and Trivial bulk without assuming any symmetry.

  3. Interacting TSC and Possible Origin of 16n chiral fermions in Standard Model Collaborators: Postdoc: Group member: Yi-Zhuang You Yoni BenTov Very helpful discussions with Joe Polchinski, Mark Srednicki, Robert Sugar, Xiao-Gang Wen, Alexei Kitaev, Tony Zee……. Wen, arXiv:1305.1045, You, BenTov, Xu, arXiv:1402.4151, Kitaev, unpublished

  4. Interacting TSC and Possible Origin of 16n chiral fermions in Standard Model Motivation: 1. Finding an application for interacting topological superconductors, especially a non-industry application; 2. Many high energy physicists are studying CMT using high energy techniques, we need to return the favor. Current understanding of interacting TSC: Interaction may not lead to any new topological superconductor, but it can definitely “reduce” the classification of topological superconductor, i.e. interaction can drive some noninteracting TSC trivial, in other words, interaction can gap out the boundary of some noninteracting TSC, without breaking any symmetry.

  5. Interacting TSC and Possible Origin of 16n chiral fermions in Standard Model Weyl/chiral fermions: Weyl fermions can be gapped out by pairing:

  6. Interacting TSC and Possible Origin of 16n chiral fermions in Standard Model Very high energy In Standard Model (higher than EW unification energy), every generation has (effectively) 16 massless Left chiral fermions coupled with gauge field (spinor rep of SO(10) in GUT): This theory is difficult to regularize on a 3d lattice. Because on a 3d lattice, if we want to realize left fermions, we also get right fermions coupled to the same gauge theory For example: Weyl semimetal has both left, and right Weyl fermions in the 3d BZ:

  7. Interacting TSC and Possible Origin of 16n chiral fermions in Standard Model Very high energy In Standard Model (higher than EW unification energy), every generation has (effectively) 16 massless Left chiral fermions coupled with gauge field (spinor rep of SO(10) in GUT): This theory is difficult to regularize on a 3d lattice. Because on a 3d lattice, if we want to realize left fermions, we also get right fermions coupled to the same gauge theory Popular alternative: Realize chiral fermions on the 3d boundary of a 4d topological insulator/superconductor 3d boundary, 16 chiral fermions Mirror sector

  8. Interacting TSC and Possible Origin of 16n chiral fermions in Standard Model 3d boundary, 16 chiral fermions Mirror sector However, this approach requires a subtle adjustment of the fourth dimension. If the fourth dimension is too large, there will be gapless photons in the bulk; if the fourth dimension is too small, the mirror sector on the other boundary will interfere. Key question: Can we gap out the mirror sector (chiral fermions on the other boundary) without affecting the SM at all? This cannot be done in the standard way (spontaneous symmetry breaking, condense a boson that couples to the mirror fermion mass)

  9. Interacting TSC and Possible Origin of 16n chiral fermions in Standard Model 3d boundary, 16 chiral fermions Mirror sector, gapped by interaction A different question: Can we gap out the mirror sector with short range interaction, while If this is possible, then only16 left fermions survive at low energy. Our conclusion: this is only possible with 16 chiral fermions, i.e. classification of 4d TSC is reduced by interaction gapless gapped +infty 0

  10. 0d boundary of 1d TSC Consider N copies of 0d Majorana fermions with time-reversal symmetry (in total 2N/2 states): Breaks time-reversal For N = 2, the only possible Hamiltonian is But it breaks time-reversal symmetry, thus with time-reversal symmetry, H = 0, the state is 2-fold degenerate. For N = 4, the only T invariant Hamiltonian is

  11. 0d boundary of 1d TSC Finally, when N = 8, doublet doublet GS fully gapped, nondegenerate Thus, when N = 8, the Majorana fermions can be gapped out by interaction without degeneracy, and

  12. 0d boundary of 1d TSC These 0d fermions are realized at the boundary of 1d TSC: J2 J2 γ1 γ2 Trivial J1 J1 TSC In the bulk: E E With N flavors, at the boundary This implies that, with interaction, 8 copies of such 1d TSC is trivial, i.e. interaction reduces the classification from Z to Z8. Fidkowski, Kitaev, 2009

  13. 1d boundary of 2d TSC 1d boundary of 2d p±ip TSC: The system has time-reversal symmetry, which forbids any quadratic mass for odd flavors, but does not forbid mass for even flavors. Define another Z2 symmetry: The T and Z2 together guarantee that the 1d boundary of arbitrary copies remain gapless, without interaction, i.e. Z classification. Short range interactions reduce the classification of this 2d TSC from Zto Z8, namely its edge (8 copies of 1d Majorana fermions) can be gapped out by interaction, with Qi, 2012, Yao, Ryu 2012, Ryu, Zhang 2012, Gu, Levin 2013

  14. 1d boundary of 2d TSC Short range interactions reduce the classification of this 2d TSC from Zto Z8, namely its edge (8 copies of 1d Majorana fermions) can be gapped out by interaction, with Qi, 2012, Yao, Ryu 2012, Ryu, Zhang 2012, Gu, Levin 2013 This can be shown with accurate bosonization calculation (Fidkowski, Kitaev 2009) One can also demonstrate this result with an argument, which can be generalized to higher dimensions. Consider Hamiltonian:

  15. 1d boundary of 2d TSC If ϕ orders/condenses, fermions are gapped, breaks T and Z2, but preserves T’ If ϕ disorders, all symmetries are preserved, integrating out ϕ will lead to a local four fermion interaction. ϕdisorder, kink condenses ϕcondense/order The symmetries can be restored by condensing the kinks of ϕ(transverse field Ising). A fully gapped and nondegenerate symmetric 1d phase is only possible when kink is gapped and nondegenerate.

  16. 1d boundary of 2d TSC If ϕ orders/condenses, fermions are gapped, breaks T and Z2, but preserves T’ If ϕ disorders, all symmetries are preserved, integrating out ϕ will lead to a local four fermion interaction. ϕdisorder, kink condenses ϕcondense/order A kink of ϕ has N flavors of 0d Majorana fermion modes, with We know that with N = 8, interaction can gap out kink with no deg, so….

  17. 2d boundary of 3d TSC 3d TSC Short range interactions reduce the classification of the 3d TSC from Z to Z16, namely its edge (16 copies of 2d Majorana fermions) can be gapped out by interaction, with Kitaev (unpublished) Fidkowski, et.al. 2013, Wang, Senthil 2014, Metlitski, et.al. 2014, You, Xu, arXiv:1409.0168

  18. 2d boundary of 3d TSC Consider a modified boundary Hamiltonian (Wang, Senthil2014): Consider an enlarged O(2) symmetry. When ϕ condenses/orders, it breaks T, breaks O(2), but keeps All the symmetries can be restored by condensing the vortices of the ϕ order parameter. A fully gapped, nondegenerate, symmetric state is only possible if the vortex is gapped, nondegenerate. A vortex core has one Majorana mode, and With N = 16, interaction can gap out the 2d boundary with no deg.

  19. 3d boundary of 4d TSC (sketch) The 3d boundary of a 4d TSC with U(1) x T x Z2 symmetry: These symmetries guarantee that no quadratic mass terms are allowed at the 3d boundary. So without interaction the classification of this 4d TSC is Z. We want to argue that, with interaction, the classification is reduced to Z8, namely the interaction can gap out 16flavors of 3d left chiral fermions without generating any quadratic fermion mass.

  20. 3d boundary of 4d TSC (sketch) The 3d boundary of a 4d TSC with U(1) x T x Z2 symmetry: Now consider U(1) order parameter: The U(1) symmetry can be restored by condensing the vortex loops of the order parameter. For N=1 copy, the vortex line is a gapless 1+1d Majorana fermion with T and Z2 symmetry (same as 1d boundary of 2d TSC) Then when N=8 (16 chiral fermions at the 3d boundary), interaction can gap out vortex loop.

  21. 3d boundary of 4d TSC (sketch) The 3d boundary of a 4d TSC with U(1) x T x Z2 symmetry: Now consider three component order parameter: All the symmetries can be restored by condensing the hedgehog monopole of the order parameter. For N=1 copy, the monopole is a 0d Majorana fermion with T symmetry Then when N=8 (16 chiral fermions at the 3d boundary), interaction can gap out monopole.

  22. 3d boundary of 4d TSC (sketch) Dual theory for hedgehog monopole: Hedgehog monopole can be viewed as a domain wall of two flavors of vortex loops. Dual theory for SF Goldstone mode: Dual theory for one flavor of vortex loop: Dual theory for two flavors of vortex loops plus monopole:

  23. Interacting TSC and Possible Origin of 16n chiral fermions in Standard Model Further thoughts: Question 1: what is the maximal symmetry of the interaction term? Question 2: Is this phase transition continuous? If so, what is the field theory for this phase transition? (Numerical data suggests this is indeed a continuous phase transition. To appear) gapless gapped +infty 0 Question 3: properties of the strongly coupled “trivial” state? The fermion Green’s function has an analytic zero, G(ω) ~ ωarXiv:1403.4938

  24. Interacting TSC and Possible Origin of 16n chiral fermions in Standard Model Conclusion for part 1: 3d boundary, 16 chiral fermions Mirror sector, gapped by interaction When and only when there are 16 chiral fermions, we can gap out the mirror sector by interaction with Then only the 16 left fermions survive at low energy.

  25. Gravitational Anomalies and Bosonicphases with Gapless boundary and Trivial bulk Introduction for part 2: Fermionic TI and TSC: systems with trivial bulk spectrum, but gapless boundary; 2d IQH and p+ip TSC: does not need any symmetry; 2d QSH: U(1) and time-reversal 3d TI: U(1) and time-reversal 3d He3B: time-reversal Bosonic analogue: 2d E8 state (Kitaev): does not need any symmetry; chiral bosons with chiral central charge c=8 at the 1d boundary Bosonic “topological insulators”, or bosonic symmetry protected topological states: Chen, Gu, Liu, Wen, 2011.

  26. Gravitational Anomalies and Bosonicphases with Gapless boundary and Trivial bulk 2d E8 state (Kitaev): does not need any symmetry; chiral bosons with chiral c=8 at the 1d boundary. Effective field theory:

  27. Gravitational Anomalies and Bosonicphases with Gapless boundary and Trivial bulk 2d E8 state (Kitaev): does not need any symmetry; chiral bosons with chiral c=8 at the 1d boundary. Chiral boson will lead to gravitational anomaly at the 1+1d boundary (namely general coordinate transformation is no longer a symmetry). Goal: Can we find higher dimensional analogues of this state? Key: can we find higher dimensional (boundary) bosonic theories which are gapless without assuming any symmetry? Or: can we find higher dimensional (boundary) bosonic theories with gravitational anomalies?

  28. Gravitational Anomalies and Bosonicphases with Gapless boundary and Trivial bulk In (4k+2)d space-time (4k+1d space), the following “self-dual” rank-2k tensor boson field Θ has gravitational anomalies: (Alvarez-Gauze, Witten 1983) When k=0 (1+1d space-time), the self-dual condition becomes: The 4k+3d bulk field theory for this self-dual boson field is C is a (2k+1)-form antisymmetric gauge field. Recall: 2+1d CS field has 1+1d chiral boson at its boundary.

  29. Gravitational Anomalies and Bosonicphases with Gapless boundary and Trivial bulk The K matrix has to satisfy the following conditions to construct the desired bosonic phase: 1, Det[K] = 1, otherwise the bulk will have topological degeneracy; 2, local excitations of this system are all bosonic; The same K for E8 state in 2d satisfies both conditions:

  30. Gravitational Anomalies and Bosonicphases with Gapless boundary and Trivial bulk Knowing this boson state in 4k+2d space (labeled as B4k+2 state), we can construct other bosonic state in other dimensions. In every 4k+3d space, there is a bosonic state with time-reversal symmetry, which can be viewed as proliferating T-breaking domain walls with B4k+2sandwiched in each T domain wall. Its 4k+4d bulk space-time action is: This state has Z2 classification, namely it is only a nontrivial BSPT with θ = π mod 2π (analogue of 3d TI).

  31. Gravitational Anomalies and Bosonicphases with Gapless boundary and Trivial bulk Knowing this boson state in 4k+2d space (labeled as B4k+2 state), we can construct other bosonic state in other dimensions. In every 4k+4d space, there is a bosonic state with U(1) symmetry, which can be viewed as proliferating U(1) vortex with B4k+2stuffed in each vortex. After “gauging” this U(1) global symmetry, its 4k+5d bulk space-time action is: This state has Z classification. At the 4k+4d boundary, there is a mixed U(1) and gravitational anomaly. ……

  32. Gravitational Anomalies and Bosonicphases with Gapless boundary and Trivial bulk Further thoughts: We used the perturbative gravitational anomalies to construct higher dimensional bosonic TI without any symmetry; What about global gravitational anomalies? In 8k and 8k+1d space-time, single Majorana fermions have global gravitational anomalies (Witten 1983), namely partition function changes sign under a “large” general coordinate transformation. Global gravitational anomaly (Z2 classified) corresponds to the Z2 classification of 1d, 8d and 9d fermionic TI without any symmetry. By contrast, perturbative gravitational anomaly (Z classified) corresponds to the Z classification at 2d, 6d, 10d… But is there a bosonic theory with global gravitational anomalies?

  33. Gravitational Anomalies and Bosonicphases with Gapless boundary and Trivial bulk Conclusion for part 2: In every 4k+2d space, there is a bosonic state with trivial bulk spectrum, but gapless boundary states and boundary gravitational anomalies, without assuming any symmetry. Descendant bosonic SPT states in other dimensions can be constructed. All these states are beyond the group cohomology classification of bosonic SPT states.

More Related