1 / 41

Recent HADES results

Recent HADES results. P. Salabura M. Smoluchowski Institute of Physcis Jagiellonian University. HADES 2010-2013 results. e+e- production in p+p, p+A @ 3.5 GeV Vector meson and  in (cold) nuclear matter Baryon Resonance decays

eloise
Download Presentation

Recent HADES results

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Recent HADES results P. Salabura M. Smoluchowski Institute of Physcis Jagiellonian University

  2. HADES 2010-2013 results • e+e- production in p+p, p+A @ 3.5 GeV • Vector meson and  in (cold) nuclear matter • Baryon Resonance decays • e+e- production in HI collisions: status of Au+Au data

  3. e+e-sourcesat SIS18 energies excitation function ! isospin effects Ebeam < 2 AGeV ° e+e- e+e-  HADES PRC85 (2012) 054005 e+e- DLS: PRC57 (1998)1867 ,  Ne+e- 1 2 3 4 5 Ebeam (GeV)  Me+e->M0 • Me+e- < 0.15 GeV/c2 dominated by 0 Dalitz • 0.15 < Me+e- < 0.55 GeV/c2 : Resonance (, N*)Ne+e- (Dalitz decays) • NN-bremmstrahlung, and  e+e- decays ! • M > 0.55 GeV/c2 : Resonance (, N* ) Dalitz decays + / ~2 Understanding of Baryon Sources is essential for HADES physics

  4. Inclusive e+e- productioninpp @ 2.2 and 3.5 GeV 3. 5 GeV 2.2 GeV HADES EPJA48 (2012) 64 HADES PRC85 (2012) 054005 • Unexplained yield excess above exp. cocktail below VM pole • At 3.5 GeV : • 0 Dalitz decay fixed by data • and resonance (, N* ) not easy to isolate ! higher resonances? • / fixed to some extent by exclusive pp data (hadronic channels) and clear  peak

  5. e+e- pTdistributions p+p @ 3.5 GeV sensitive to / contributions !

  6. p+pvsp+Nb @ 3.5 GeV data: HADES PLB715 (2012) 304 „fast” pe+e->0.8 GeV/c „fast” pe+e-< 0.8 GeV/c Nuclear modification factor pp data scaled by „Apart” scaling • large acceptance at small Me+e- and p (<1 GeV/c) ( first measurement at low p !) • for slow e+e- : excess emerges above pp reference ,  peak less pronounced

  7. RapiditydistributionsppvspNb @ 3.5 GeV p+Nb:clear shift towards target rapidity for M>M

  8. e+e- excessinp+Nb : lowpe+e- „slow” (p<0.8 GeV/c) pairs „excess over pp reference” Rpa vs momentum Me+e • RpA (vs p) – increase at small momenta : largest for the „-region” BUT NOT for  peak   absorption (observed also by CBTAPS and CLAS in (+A) ) ! • clear excess in p+A below VM pole  • - secondary reactions : +N   (1720,..)(N* (1520),..) NNe+e- (see J. Weil talk) • or/and in medium  modification ? first the p+p reference must be understood !

  9. 0 /  productioninp+Nb @ 3.5 GeVwithconversionmethod HADES (2013) arXiv:1305.3118 mT scaling of light mesons Total detection probability 10-6 -10-7 ! Similar analysis for p+p in progress!

  10. 0/ pTdistribution/yieldscompared to transport EXP (4): 0 

  11. e+e- sourcesinpp @ 3.5 GeV J.Weil: EPJA48 (2012)111 E. Bratkovskaya et. al.: arXiv:1301.0786v1 • Many uncertainties: inclusive cross sections , ,  , / (fixed now by HADES) • pe+e- transition (Dalitz decay); rates, em. Transition Form-Factors •  - spectral function !

  12. Ne+e-Dalitzdecay QCD QED • „point-like” N e- e + • exact field theory calculation • 3 independent amplitudes: • e.g. Electric, Magnetic and Coulomb electromagnetic form factors GM(q2),GE(q2),GC(q2) spin flip „pion cloud” e+ I.G. Aznauryan andV.D. Burkert, Prog. Part. Nucl. Phys.67 (2012) q „quark core” q q e- « Photon point » : q2=0 GM(0)=3, GE(0)=GC(0)~0 Jones and Scadron convention

  13. Ne+e- : twocomponent (pion cloud+quarkcore) models Iachello, Wan: implemented for HADES by I. Froehlich et. EPJA 45, 401 (2010) M. Pena, G. Ramahlo PRD85 (2012) 113014 cloud/core ~ 0.99/0.01 cloud/core ~ 0.44/0.56 M=1.8 QED QED M=1.5 M=1.23 Mee [GeV/c2] • pion cloud /core contribution affects strongly Q2 dependence of eTFF  VDM • T. Pena - higher resonances in work..

  14. Higherresonances.. QED: point-like R-* vertex M. Zetenyi et al. PRC 67, 044002 (2003) constraints from R->N Resonance model GiBUU, UrQMD, BUU,HSD .. extended VDM: M. I. Krivoruchenko et al. Ann. Phys. 296, 299 (2002). example:J. Weil EPJA 48(2012)111 „factorization” eTFF (Mee)

  15. Baryonresonacesin p+p@3.5 GeV • Goal: Study 3 connected exclusive channels: • pppp0and pppn+ to fix R (,N*) cross sections • Convert Rpe+e- and check in pp pp e+e- • Resonance model: production amplitude is given by incoherent sum • of Resonance contributions, isospin relations • Starting point: S. Teis R parametrization (S. Teis et al., Z. Phys. A356, 421 (1997).) , take 4* resonances + empirical angular distributions (strong forward-backward peaking) BR(Rpe+e-) : „QED” point-like R-* vertex M. Zetenyi and Gy. Wolf., Heavy Ion Phys. 17 (2003) 27. For the overlaping resonances only one resonance with largest BR(N) selected

  16. One pion production A.Dybczak phd Kraków (2013) pn+ • Acceptance corrected spectra • ++ (1232) dominates ! • excelent description of -line shape („Moniz” FF) pp0 • +(1232), N*(1440),N*(1520),.. P.Salabura

  17. exclusive / productioninpp @ 3.5 GeV K.Teilab phd Frankfur (2011) = = N* (1535) fixed from  Dalitz plot N* (1535) ->p BR(42%) N*(1535) = 1520.15 [mb]

  18. Results for ppe+e- channel „QED” : point like RN* vertex • Significant contribution from higher (than ) mass resonances • Addtional strength below VM pole needed – off shell  meson coupling ! – extended interaction vertex • low mass resonances : (1232), N(1440), N(1520) ?

  19. eVDM and (1232) eTFF eTFF from Iachello, Wan saturates the yield- no place left for other resonances • large ambiguities related to the resonance selection

  20. Comparison to otherparametrizations comparison to UrQMD: S. Bass Prog.Part.Nucl.Phys. 41 (1998) 225-370 comparison to S. Teis Preliminary J. Weil et al. EPJA 48(2012)111 Resonances with BR(N)

  21. RNNe+e- Resonance XS and RN BR from UrQMD Resonance XS and RN BR from GiBUU Preliminary

  22. e+e- from HI collisions

  23. e+e- pairsfromAr+KCl @ 1.756 Cocktail with „freeze-out” comp.  component subtracted data PRC84(2001)014902 • first ->e+e- observation at SIS18 energies • first evidence for „true” excess above NN and light CC systems • Excess yield scales with system size ~ Apart1.4  multistep processes? • let’s see Au+Au !

  24. Au+Au May’2012 • New RPC detector (180 << 450 ) • New DAQ and read-out – 10 kHz data taking rate

  25. Strangenessreconstruction

  26. Lepton ID and purity Single lepton purity PID: Multi-Variante Analysis Vertex reconstruction electrons hadrons

  27. Summary • Precise e+e- data collected for pp/pNb @ 3.5 GeV evidences for interesting physics („excess” below VM pole) • Intepretation is challanging ! - pp reference net (yet) well understood exclusive ppe+e-, pp0 , pn+ show that off-shell -R coupling in R-> pe+e- isvery important -  inclusive production is possible with conversion technique ! IT IS IMPORTANT REFERENCE system for HADES at FAIR • HADES made succefull Au+Au @1.23 GeV campaign • single track and resonance (hadron) reconstruction shows great data quality • e+e- spectra are very close to be produced

  28. SIS The HADES collaboration 13 Institutions Technical Proposal accepted 1995 First experiments 2001 • Cracow (Univ.), Poland • Darmstadt (GSI), Germany • Dresden (FZD), Germany • Dubna (JINR), Russia • Frankfurt (Univ.), Germany • Giessen (Univ.), Germany • München (TUM), Germany • Moscow (ITEP,RAS), Russia • Nicosia (Univ.), Cyprus • Orsay (IPN), France • Rez (CAS, NPI), Czech Rep. • Sant. de Compostela (Univ.), Spain • LIP, Portugal GSI P.Salabura

  29. Study of hadron properties in dense baryonic matter • The case of Large B and moderate T : • interesting region in phase diagramme with a large discovery potential • not probed experimentally by means of rare penetrating probes L. McLerran, R.D. Pisarski 2007 • Probes: • dielectrons : • sensitive probe of extended baryon structure -medium modifications ? • meson in medium properies • Multistrange baryons: -(1321),  • Strategy: • Systematic measurements • in p +p, p+A and A+A at 2- 8 AGeV RHIC, BES Na61 experiment: chemical freeze-out VDM CBM Fair Begun et. al. arXiv:1208.410 HADES

  30. ResonancepropertiesUrQMD S. Bass Prog.Part.Nucl.Phys. 41 (1998) 225-370 P.Salabura

  31. N R g* e+ r, w, e- Baryonresonancestructure Time-Like el.Transition Form Factors : Dalitz decays Space-Like el.Transition Form Factors n - e- R q2 <0 p * e+ * R p q2 > 0 e- e- 0 e-- p Vector Dominance Model studied at JLab/CLAS/MAMI,.. pion electroproduction Dalitz Decays: poorly known !  directly related to : e+e-NNe+e- Dalitz decays , e-pe-N  Time Like domain : q2 >0 Space Like domain q2 <0 0 q2

  32. e+e- fromC+Ccollisions and NN  contribution subtracted cocktail: „long lived sources”-freeze out data: HADES PLB690 (2010)118 baryons PRL98(2007) 052302 ratio CC/NN • NN=1/2(np+pp) –reference- and C+C normalized to the individual N(0 )=1/2(N(+) + N(-)) • e+e- subtracted („long lived” source) - cross section known from other exp.( TAPS) • C+C data (1 and 2 AGeV !) reproduced (within 20%) by NN reference up to 0.45 GeV/c2 – no room (within error bars) for in-medium effects

  33. ExcessscalingwithApart/Ebeam C+C Ca+Ca TAPS - HADES, DLS e+e- • Baryonic sources : (1232) ~10-20%, N(1535,..)- 1-2%, N–N bremsstr.. • excitation function similar in shape to pions

  34. pspec pt Quasi freep+nreactionwithdeutron d spectator model X p n • average pn distance ~ 3 fm • total cross section reduced by ~8% • (p shadowing + meson absorption) Ek=1.25 AGeV momentum in deuteron rest frame

  35. pspec pt Quasi-free pn reactionsind+pcollisions spectator model d X=, , .. p n spectator on-shell CELSIUS: PRC58(1998)2667 Ed=0.76 GeV Ep=1.35 GeV COSY-TOF EPJA29(2006) 353

  36. Spectator model atwork (Q<100 MeV) p+d -> ps pn  d+p -> ps pp- p+d -> ps d COSY11, SATURNE, CELSIUS P. Moskal, nucl–ex/0110001 and P. Moskal PRC79(2009) 015208 COSY-TOF EPJ. A 29, (2006) 353 ANKE PRL 97 (2006)142301 pspectator momentum MC ( NN pot) • overall good agreement with spec. model p+d -> ns pp

  37. exclusive channel: np.npe+e- Exclusive (e+e-) - one proton e+e- in HADES ppe+e- npe+e- • excess in np reaction visible also in exclusive channels (note: no  contribution! ) • missing mass spectra reproduced by simulation ppppe+e- npnpe+e- Me+e- >M0 Me+e- >M0

  38. Inclusive e+e- (n+p)QFvspp calculations: R. Shyam and U. Mosel Phys. Rev. C 82:062201, 2010 data: HADES PLB690 (2010)118 • excess np. over pp ! • R. Shyam and U. Mosel Phys. Rev. C 82:062201, 2010 • due to eFF of charged pion • charge pion exchange & pion eFormFactor pion eTFF : W. Weise, G. Brown, M. Rho NPA 474(1986)669 p p n p e+ π0 ρ π+ ρ e+ e- e- π0 π- p p n p

  39. e+e- inp+p @ 1.25 GeV inclusive Mainsource: pe+e- Dalitz decay  production not possible – belowthreshold  GM (q2) VMD Time Like (q2 >0)  (J=3/2)->N (J=1/2) * transition: Calculations: Vector Meson Dominance Krivoruchenko et al. PRD 65 (2001) 017502 G. Ramalho and T. Pena arxiv: 1205.2575v1 (2012) F. Dohrmann et al., Eur. Phys. J. A 45, 401 (2010) HADES: PLB690 (2010)118 p p • 0 ,  fixed by 1 pion exclusive production : HADES EPJA48(2012) 74 • BR (Ne+e-)  4*10-5 agrees with model predictions. • G(q2 ) dependence not very essential at this low energy.. p p D+ * e+

  40. „Emissivity” of baryonicmatter Dense matter : 3*B ~ 0.5/fm3 30% baryon resonances 33 pions (T~ 80 MeV) e+ Vacumm e- RNe+e- pion cloud e+ e+ e+ q q q q q q q q q e+ q q q q q q q q q q q q q q q q q q - e- e- e- e- qq - qq How does the radiation from overlaping baryons looks like?

  41. in-medium width Transparencyratioin „coldmatter” • „disapearance of meson in nuclear matter” Glauber Picture; CabreraNPA733(2004)130 Production AbsorptionFSI of decay products • ISI (not for ), Pauli-blocking, Fermi-motion, secondary processes, shadowing …. • normalization to C to • reduce nuclear effects absent for e+e-

More Related