Quel che vedo sempre vero
This presentation is the property of its rightful owner.
Sponsored Links
1 / 18

Quel che vedo è sempre vero? PowerPoint PPT Presentation


  • 70 Views
  • Uploaded on
  • Presentation posted in: General

Quel che vedo è sempre vero?. A cura di Lucio Vecchio Liceo Scientifico Statale “Giovanni da Procida” - Salerno. L’attività è stata realizzata e sperimentata in classe nel corso dell’anno scolastico 2006/07 nell’ambito del Progetto [email protected] I parte.

Download Presentation

Quel che vedo è sempre vero?

An Image/Link below is provided (as is) to download presentation

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.


- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -

Presentation Transcript


Quel che vedo sempre vero

Quel che vedo è sempre vero?

A cura di Lucio Vecchio

Liceo Scientifico Statale “Giovanni da Procida” - Salerno

L’attività è stata realizzata e sperimentata in classe nel corso dell’anno scolastico 2006/07 nell’ambito del Progetto [email protected]


Quel che vedo sempre vero

I parte


Quel che vedo sempre vero

La differenza tra il quadrato di un numero naturale e il quadrato del suo precedente è sempre un numero dispari

La mia affermazione è corretta?

Verifichiamolacon alcuni esempi

Completiamo la tabella

16

9

25

49

64

15

121

100

21


La somma di due numeri uguali sempre uguale al loro prodotto

La somma di due numeri uguali è sempre uguale al loro prodotto

Un’altra affermazione ….

Come prima verifichiamolacon alcuni esempi

Completiamo la tabella

0

0

4

4

La mia affermazione è corretta?

Certamente NO !!!

Ma allora …

Quel che vedo è sempre vero ?


3 3 3 x 3

3 + 3 ≠ 3 x 3

Un semplice esempio numerico è sufficiente per dimostrare la falsità della seconda affermazione

Provate ora a verificare la prima affermazione con i primi 100 numeri di No e, per non perdere tempo nei calcoli, utilizzate il foglio elettronico Excel

Basta la verifica fatta per affermare la verità di tale proposizione?


Quel che vedo sempre vero

Qual è lo sviluppo di ?

Che cosa ci assicura che l’affermazione: “La differenza tra il quadrato di un numero naturale e il quadrato del suo precedente è un numero dispari” è sempre vera?

Formalizziamo algebricamente il problema

Un numero:

n

Il suo precedente:

n - 1

La differenza dei quadrati:

Qual è lo sviluppo di ?

2n -1 è pari o dispari?

Ripeti la dimostrazione indicando il primo numero con n+1 ed il suo precedente con n

Qual è la differenza tra verificare e dimostrare una congettura?


1 la somma di due numeri dispari consecutivi un numero pari anzi un multiplo di 4

1. la somma di due numeri dispari consecutivi è un numero pari (anzi è un multiplo di 4);

Formalizziamo algebricamente i seguenti problemi e

dimostriamo, come prima, la loro verità

4. il prodotto di due numeri, di cui almeno uno è pari, è pari.

(2n+1) +

(2n+3)

oppure

(2n-1) +

(2n+1)

2n +

(2m+1)

2. la somma di un numero pari con un numero dispari è un numero dispari;

3. il prodotto di due numeri dispari è un numero dispari;

(2n+1)

(2m+1)

Quanti casi dobbiamo considerare?

2n

(2m+1)

oppure

(2n)

(2m)


Quel che vedo sempre vero

Esercizi per casa

  • Discuti le seguenti affermazioni e dimostra se sono vere o false:• “La somma di tre numeri consecutivi è sempre divisibile per 3”. • “La somma di due numeri consecutivi è sempre dispari”.

  • “La somma di due numeri pari è sempre pari”• “Un numero intero che termina con 7 e non è divisibile per 3 è primo”. • “La somma fra un numero e il suo quadrato è un numero dispari”.

Risolvi e commenta

Ciascuna delle persone che ha partecipato a un ricevimento ha dato un certo numero di strette di mano. Dimostra che il numero di quelli che ne hanno dato un numero dispari è pari.


Quel che vedo sempre vero

II parte


Quel che vedo sempre vero

I programmi di geometria dinamica servono a

dimostrare

le relazioni che intercorrono tra enti geometrici?

Costruiamo, ad esempio, con Geogebra le mediane

di un triangolo qualsiasi.


Quel che vedo sempre vero

Registrazione da LIM


Quel che vedo sempre vero

Le mediane sembrano incontrarsi in uno stesso punto !

ma ne siamo sicuri?

Se i punti di intersezione fossero distinti, ma distanti l’uno dall’altro meno di 0,00001 mm, ci accorgeremmo della differenza?

Le costruzioni fatte ci aiutano ad intuire le possibili relazioni che intercorrono tra gli enti geometrici considerati, ma ….

… non bastaverificare

… occorredimostrare


Quel che vedo sempre vero

Un’altra congettura …. famosa

Ogni numero pari maggiore di 2 può essere scritto

come somma di due numeri primi

Come prima, proviamo a verificarlacon alcuni esempi

6 =

3+3

4 =

2+2

8 =

5+3

16 =

11+5

10 =

5+5

12 =

7+5

14 =

7+7


Quel che vedo sempre vero

Via

Scegli un numero pari

Scegli il numero primo più vicino al pari

considerato, purché minore

Calcola la differenza

La differenza è un

numero primo?

No

Si

Il numero pari considerato

è la somma

dei numeri primi trovati

Fine

Esercizi per casa

1) Utilizzando l’algoritmo di Cantor e le tavole dei numeri primi, verifica la congettura enunciata scegliendo 20 numeri pari a tuo piacimento

2) Prova a dimostrare la congettura enunciata


Quel che vedo sempre vero

3) Leggi il brano e dici perché il problema è inverosimile

Uno scherzo matematico: tre dispari fanno un pari

XLIII. PROPOSITIO DE PORCIS.

Homo quidam habuit CCC porcos, et jussit, ut tot porci numero impari in III dies occidi deberent. Similis est et de XXX sententia. Dicat, qui potest, quot porci impares sive de CCC sive de XXX, inter tres dies [ter] occidendi sunt? Haec ratio indissolubilis ad increpandum composita est.

SolutioEcce fabula! quae a nemini solvi potest, ut CCC porci, sive triginta in tribus diebus impari numero occidantur. Haec fabula est tantum ad pueros increpandos.

XLIII. PROPOSIZIONE SU ALCUNI MAIALI.

Un uomo aveva 300 maiali. Ordinò che fossero tutti macellati in 3 giorni, ma ogni giorno doveva essere ucciso un numero dispari di maiali. Egli volle che la stessa cosa fosse fatta con 30 maiali.Dica, chi può, quanti maiali vennero uccisi al giorno in numero dispari, del gruppo dei 300 e dei 30 maiali? Questo calcolo irrisolvibile è stato composto per scherno.

SoluzioneEcco uno scherzo! Nessuno può risolvere il problema nel modo indicato, cioè in modo che 300 o 30 maiali siano uccisi in 3 giorni, macellandone un numero dispari ogni giorno. Questo è un problema inverosimile ideato solo per mettere alla prova i giovani.

Da BASE Cinque - Appunti di Matematica ricreativa


Quel che vedo sempre vero

Un po’ di storia ed un libro da leggere


Quel che vedo sempre vero

La storia …..

  • Nel 1742, il matematico prussiano Christian Goldbach scrisse una lettera a Leonhard Euler in cui propose la seguente congettura:

    • Ogni numero dispari maggiore di 5 può essere scritto come somma di tre numeri primi.

  • Euler, interessandosi al problema, rispose con una versione più forte della congettura:

    • Ogni numero pari maggiore di 2 può essere scritto come somma di due numeri primi.

  • La prima delle due è oggi conosciuta come congettura "debole" di Goldbach, la seconda come congettura "forte" di Goldbach. (L'enunciato della versione forte implica quello della congettura debole, poiché ogni numero dispari maggiore di 5 può essere ottenuto aggiungendo 3 ad ogni numero pari maggiore di 2). Si conviene che il termine congettura di Goldbach sia sinonimo di congettura forte di Goldbach.

Entrambi i problemi sono rimasti irrisolti fino ad oggi.


Quel che vedo sempre vero

…. il libro

  • Apostolos Doxiadis

    • Zio Petros

    • e la congettura

    • di Goldbach

  • Tascabili Bompiani

  • € 6,20


  • Login