1 / 38

New particle spectroscopy update

International Conference for High Energy Physics, 4-12 July 2012, Melbourne. New particle spectroscopy update. Roman Mizuk ITEP, Moscow. Spectroscopy results @ ICHEP2012 (1). BESIII. Precise measurement of  c ,  c ’ , h c parameters New decay modes of J/ , ’ ,  cJ ,  c

dacey
Download Presentation

New particle spectroscopy update

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. International Conference for High Energy Physics, 4-12 July 2012, Melbourne New particle spectroscopy update Roman Mizuk ITEP, Moscow

  2. Spectroscopy results @ ICHEP2012 (1) BESIII Precise measurement of c , c’ , hc parameters New decay modes of J/ , ’ , cJ , c PWA J/   pp PWA J/    PWA J/    Confirmation of X(1835) in J/   +-’, +two new First observation of isospin violating mode (1405)  f0(980)0 First observation of ’  c’  Shan Jin Todyshev KEDR Precise measurement of (2S) and (3770) parameters BaBar Study of   c(1S) +– Update on Y(4260) using e+e-  J/+– Confirmation of Y(4660) using e+e-  (2S)+– Confirmation of   X(3915)  J/ Search for charged Z+ states in B c1 K Precise measurement of D* width Santoro

  3. Spectroscopy results @ ICHEP2012 (2) BELLE Evidence for resonant structures in   , ,  Study of   ’+- First evidence for 2 Search for X(3872)C– in B  (J/) K decays Study of e+e-  J/ Amplitude analysis of B  J/K Measurement of BF[ (2S) (1S)  ] First observation of (1S,2S)  light hadrons Search for (2S)  baryon pairs Search for bJ  double charmonium Search for 5– – pentaquark and H dibaryon in (1S,2S) decays Rb scan First evidence for b(2S) Observation of Zb(10610)  BB* and Zb(10650)  B*B* Evidence for Zb0 Observation of (5S) (1S,2S)  and (5S) (1D) +– Nakazawa Yabsley Barrett Bondar

  4. Spectroscopy results @ ICHEP2012 (3) CDF Observation of b0 Evidence for P-wave b* resonance Gorelov Buszello D0 Observation of Xb  (1S) ATLAS First observation of b(3P)Masses and life-times of b-hadrons Toms CMS First observation of b* baryonc2/c1 cross-section ratio, (nS) cross-section Kai Yi Märki LHCb First observation of P-wave excited b* resonances b-baryons mass measurements Study of DsJ My talk: Heavy quarkonium (-like) states New baryons Apologies: time is limited so I cannot cover all results

  5. c π c π -- 1 Introduction Charmonium & bottomonium played important role in establishing QCD as theoryof strong interactions (11020) 11.00 Quark Model successfully describes + spectrum + annihilation widths + radiation widths (10860) 10.75 Zb (4S) 2M(B) (2D) 10.50 Breakdown for high excitations (3S) b(3S) Mass, GeV/c2 b(2P) hb(2P) – new dynamics ? – exotic states? (not qq or qqq) _ 10.25 (1D) (2S) b(2S) 10.00 b(1P) hybrid tetraquark hb(1P) 9.75 (1S) 9.50 molecule hadrocharmonium b(1S) - - -- JPC = 0+ 1+ (0,1,2)++ (0,1,2) P = (-1) L+1 C = (-1) L+S

  6. - - -- JPC = 0+ 1 1 + Observation of hb(1P,2P) e+e-(5S)  hb(nP) +– reconstructed, use Mmiss(+-) (Pe+e- – P+-)2 (11020) 11.00 (10860) PRL108,032001(2012) +- 10.75 raw distribution (4S) 2M(B) hb(2P) 10.50 (3S) b(3S) residuals b(2P) hb(1P) hb(2P) 10.25 (2S) b(2S) b(1P) 10.00 hb(1P) MHF(1P) 9.75 Belle arxiv:1205.6351 MHF(1P) = +0.8  1.1 MeV MHF(2P) = +0.5  1.2 MeV (1S) consistent with zero, as expected 9.50 b(1S) (0,1,2)++ Large hb(1,2P) production rates c.f. CLEO e+e- (4170)  hc +-

  7. - - -- JPC = 0+ 1 1 + Observation of hb(1P,2P) e+e-(5S)  hb(nP) +– reconstructed, use Mmiss(+-) (Pe+e- – P+-)2 (11020) 11.00 (10860) PRL108,032001(2012) +- 10.75 raw distribution (4S) 2M(B) hb(2P) 10.50 (3S) b(3S) residuals b(2P) hb(1P) hb(2P) 10.25 19% (2S) b(2S) b(1P) 10.00 hb(1P) 13%  9.75 41% Belle arxiv:1205.6351 MHF(1P) = +0.8  1.1 MeV MHF(2P) = +0.5  1.2 MeV (1S) consistent with zero, as expected 9.50 b(1S) (0,1,2)++ Large hb(1,2P) production rates c.f. CLEO e+e- (4170)  hc +- hb(nP) decays are a source of b(mS)

  8. e+e-(5S)hb(nP) +–  b(1S)  (11020) 11.00 (10860) +- 10.75 (4S) 2M(B) 10.50 (3S) b(3S) b(2P) hb(2P) 10.25 (2S) b(2S) b(1P) 10.00 hb(1P) Observation of hb(1P,2P) b(1S)  9.75 Mmiss (+-) (n) (1S) 9.50 b(1S) - - First measurement  = 10.8 +4.0+4.5 MeV -- JPC = 0+ –3.7 –2.0 (0,1,2)++ 1 1 + reconstruct MHF(1S) Belle : 57.9  2.3 MeV 3 arxiv:1205.6351 PDG’12 :69.3  2.8 MeV hb(1P) b(1S) BaBar (3S) BaBar (2S) hb(2P) CLEO (3S) b(1S) pNRQCD LQCD   Kniehl et al, PRL92,242001(2004) Meinel, PRD82,114502(2010) MHF(1S) Belle result decreases tension with theory as expected

  9. e+e-(5S)hb(nP) +–  b(1S)  Observation of hb(1P,2P) b(1S)  Mmiss (+-) (n) First measurement  = 10.8 +4.0+4.5 MeV –3.7 –2.0 PRL101, 071801 (2008) reconstruct MHF(1S) BaBar (3S)b(1S) Belle : 57.9  2.3 MeV ISR arxiv:1205.6351 PDG’12 :69.3  2.8 MeV b(1S) hb(1P) b(1S) b(1P) PRL103, 161801 (2009) BaBar (2S)b(1S) hb(2P) b(1S) ISR b(1S) pNRQCD LQCD Kniehl et al, PRL92,242001(2004) Meinel, PRD82,114502(2010) PRD81, 031104 (2010) Belle result decreases tension with theory CLEO (3S) as expected

  10. e+e-(5S)hb(2P) +–  b(2S)  First evidence for b(2S) Mmiss (+-) (2) MHF(2S) = 24.3 +4.0MeV –4.5 First measurement arxiv:1205.6351 PRL LQCD pNRQCD b(2S) Belle 4.2w/ syst In agreement with theory (2S) = 4  8 MeV, < 24MeV @ 90% C.L. expect 4MeV Branching fractions Expectations 41% 13% 19% BF[hb(1P)  b(1S) ] = 49.25.7+5.6 % BF[hb(2P)  b(1S) ] = 22.33.8+3.1 % BF[hb(2P)  b(2S) ] = 47.510.5+6.8 % –3.3 –3.3 Godfrey Rosner PRD66,014012(2002) –7.7 c.f. BESIII BF[hc(1P)  c(1S) ] = 54.38.5 % 39%

  11. (11020) 11.00 (10860) 10.75 (4S) 2M(B) 10.50 (3S) b(3S) b(2P) hb(2P) 10.25 Mass, GeV/c2 (2S) b(2S) b(1P) 10.00 hb(1P) Large production rate: N b(2S)  0.2 N b1 factor 30 9.75 c.f.(’c(2S)) = 0.007 (’c1) “Signal” of exclusively reconstructed b(2S) BESIII arxiv:1205.5103 PRL (1S) 9.50 Large MHF(2S) CLEO48.72.7 MeV Belle b(1S)  strong disagreement with theory  strong disagreement with theory 5σ 24.3 +4.0 MeV 24.3 +4.0 MeV  agrees with theory  agrees with theory (0,1,2)++ –4.5 –4.5 - - -- JPC = 0+ 1 1 + CLEO data Dobbs, Metreveli, Seth, Tomaradze, Xiao, arxiv:1204.4205 _ e+e- (2S)  b(2S) , b(2S)  4,6,8,10 , K, p/p (26 channels) 4.6 Issues  Bg from final state radiation can mimic signale.g. (2S)  K+K- n(+-) FSR power law tail instead of exponential not discussed hadrons Reported excess is unlikely to be the b(2S) signal

  12. (11020) 11.00 (10860) +- 10.75 (4S) 2M(B) 10.50 (3S) b(3S) b(2P) hb(2P) 10.25 (2S) b(2S) b(1P) 10.00 hb(1P) 9.75 Observation of b(3P) (1S) 9.50 b(1S) (0,1,2)++ - - -- JPC = 0+ 1 1 + [Buszello] b(3P) (1,2S) +-   conversion to e+e- Observed by ATLAS confirmed by D0 Spin-averaged M[b(3P)] ATLAS 10530  9  5 MeV D0 10551  14 17 MeV theory 10525 In agreement with theoretical expectations

  13. Charged bottomonium-like states

  14. _ Anomalies in (5S)  (bb) +– transitions -- 1 [Bondar] (11020) Belle PRL100,112001(2008) 100 11.00 [(5S) (1,2,3S) +–]>> [(4,3,2S) (1S) +–] (10860) _ +– Rescattering of on-shell B(*)B(*) ? 260 10.75 (4S) 2M(B) 2 330 10.50 (3S) Mass, GeV/c2 hb(2P) 430 10.25 1 190 (2S) b(2S) 10.00 hb(1P) 290 6 Belle PRL108,032001(2012) 9.75 (5S)  hb(1,2P) +– are not suppressed partial (keV) expect suppression QCD/mb (1S) 9.50 b(1S) spin-flip Heavy Quark Symmetry - - JPC = 0+ 1+

  15. _ Anomalies in (5S)  (bb) +– transitions -- 1 [Bondar] (11020) Belle PRL100,112001(2008) 100 11.00 [(5S) (1,2,3S) +–]>> [(4,3,2S) (1S) +–] (10860) _ + Zb – Rescattering of on-shell B(*)B(*) ? 260 10.75 (4S) 2M(B) 2 10.50 + (3S) Mass, GeV/c2 hb(2P) 430 10.25 1 (2S) b(2S) 10.00 hb(1P) 290 6 Belle PRL108,032001(2012) 9.75 (5S)  hb(1,2P) +– are not suppressed partial (keV) expect suppression QCD/mb (1S) 9.50 b(1S) spin-flip Heavy Quark Symmetry - - JPC = 0+ 1+ hb production mechanism? Study resonant structure in hb(mP) +–

  16. _ _ _  bbud  Resonant structure of (5S)  (bb) +– Belle PRL108,122001(2012) (5S) hb(1P)+- (5S) hb(2P)+- no non-res. contribution Two peaks in all modes phsp Minimal quark content phsp flavor-exotic states M[ hb(1P) π] M[ hb(2P) π] Dalitz plot analysis (5S) (1S)+- (5S) (2S)+- (5S) (3S)+- note different scales

  17.  Zb  B B*  =  +  B*B*  =  –  Zb Fit results Average over 5 channels M1 = 10607.2  2.0 MeV 1= 18.4  2.4 MeV MZb – (MB+MB*) = + 2.6  2.1 MeV M2 = 10652.2  1.5 MeV 2= 11.5  2.2 MeV MZb’ – 2MB* = + 1.8  1.7 MeV Angular analysis both states are JP = 1+ Decays IG = 1+ (C= –) Bondar et al, PRD84,054010(2011) Zb  Proximity to thresholds favors molecule over tetraquark hb(mP) S-wave not suppressed Zb’  ’ Phase btw Zb and Zb amplitudes is 0o for (nS) and 180o for hb(mP)

  18.  Zb  B B*  =  +  = 0o 180o (2S) hb(1P)  B*B*  =  – hb(1P) yield / 10MeV ’ Phase btw Zb and Zb amplitudes is 0o for (nS) and 180o for hb(mP) M(hb), GeV/c2  Zb Fit results Average over 5 channels M1 = 10607.2  2.0 MeV destr. interf. 1= 18.4  2.4 MeV MZb – (MB+MB*) = + 2.6  2.1 MeV M2 = 10652.2  1.5 MeV 2= 11.5  2.2 MeV MZb’ – 2MB* = + 1.8  1.7 MeV Angular analysis both states are JP = 1+ Decays IG = 1+ (C= –) Bondar et al, PRD84,054010(2011) Zb  Proximity to thresholds favors molecule over tetraquark hb(mP) S-wave not suppressed Zb’  Resonant behavior of Zb amplitudes (intensity & phase). Properties of Zb states are consistent with molecular structure.

  19.  Zb Mass above threshold ? _  B B*  =  + If Zb can decay to B(*)B* its lineshape is asymmetric this can shift the mass to slightly below threshold  = 0o 180o (2S) hb(1P)  B*B*  =  – Cleven et al, EPJA47,120(2011) hb(1P) yield / 10MeV ’ Phase btw Zb and Zb amplitudes is 0o for (nS) and 180o for hb(mP) M(hb), GeV/c2  Zb Fit results Average over 5 channels M1 = 10607.2  2.0 MeV destr. interf. 1= 18.4  2.4 MeV MZb – (MB+MB*) = + 2.6  2.1 MeV M2 = 10652.2  1.5 MeV 2= 11.5  2.2 MeV MZb’ – 2MB* = + 1.8  1.7 MeV Angular analysis both states are JP = 1+ Decays IG = 1+ (C= –) Bondar et al, PRD84,054010(2011) Zb  Proximity to thresholds favors molecule over tetraquark hb(mP) S-wave not suppressed Zb’  Resonant behavior of Zb amplitudes (intensity & phase). Properties of Zb states are consistent with molecular structure.

  20. Zb Zb’ _ _ _ _ _ B(*) B(*) B(*) B(*) B(*) Origin of structure at threshold 1. Threshold effect Chen Liu PRD84,094003(2011) Pronounced structures and fast change of phase are not typical ?   B(*) B(*) (2S) (5S) S-wave M [(2S)π] Danilkin Orlovsky Simonov PRD85,034012(2012) 2. Coupled-channel resonancemultiple re-scatterings  pole Zb     B(*) B(*)  B(*) Zb’ + + ... (5S) (2S) (2S) (2S)   B(*) 3. Deuteron-like molecule Ohkoda et al arxiv:1111.2921 ,,, exchange  (5S) (2S) Fit data to various predictions

  21. _ _ BF[ (5S)  B(*)B(*) ] Study e+e-  (5S)  B(*)B(*) [Bondar] _ _ preliminary Search for Zb BB* and B*B* NEW! Full reconstruction of one B _ BB* M(B) Mmiss(B) _ BB _ B*B* preliminary PRD81,112003(2010) Belle 121.4 fb-1 significance Belle 23.6 fb-1 _ (0  1.2) % (7.3  2.3) % (1.0  1.4) % BB BB* + BB* B*B* <0.60 % at 90% C.L. (4.25  0.44  0.69) %(2.12  0.29  0.36) % _ _ _ _ 9.3 5.7 _ BFs are consistent with previous measurement

  22. _ _ _ _ Zb’  BB* is suppressed w.r.t. B*B*despite larger PHSP _ Molecule admixture of BB* in Zb’ is small Observation of ZbBB* and Zb’B*B* [Bondar] preliminary NEW! _ M (BB*) Zb 8 Challenging for tetraquark Zb’ ? phsp _ M (B*B*) Zb’ 6.8 phsp Crucial input for the models

  23. NEW! (2S) 00 : Zb(10610)05.3 (4.9 w/ syst.) Zb(10650)0 2 Evidence for a neutral Zb partner [Bondar] preliminary (2S) e+e-  (5S)  (nS)00 (1S) BF[(5S)(1S)00] = (2.250.110.20) 10-3 BF[(5S)(2S)00] = (3.790.240.49) 10-3 in agreement with isospin relations M miss (0 0) Dalitz plot analysis of (1S,2S)00 w/o Zb w/ Zbs (1S) 00 : Zb signals not significant Yields agree with isospin expectations Confirmation that Zb is an isotriplet M [(2S)0 ]

  24. Charmonium (-like) states

  25. Y(4660) Z(4430)+ Y(4360) Z(4250)+ Y(4260) X(4160) X(3872) Y(3940) Z(4050)+ Y(4008) _ X(3940) DD 2(3820) JPC Charmonium table (Recently observed) Charmonia with conventional properties _ all states below DD threshold are observed XYZ states with anomalous properties

  26. Y(4660) Z(4430)+ Y(4360) Z(4250)+ Y(4260) X(4160) X(3872) Y(3940) Z(4050)+ Y(4008) _ X(3940) DD 2(3820) JPC Evidence for new charmonium state [Yabsley] preliminary B  (c1 ) K 2(1D) 4.2 w/ syst. M (c1 ), GeV M = 3823.5  2.8 MeV  = 4  6 MeV C = – Expectations Radiative decay is seen O(10keV) _ 2– –  DD is forbidden (unnatural spin-parity)  small   c1 is prominent (E1) _ Evidence for 2(1D) candidate 3– –  DD is allowed  O(10MeV)  c1 is suppressed (E2) L=2 S=1  c2 is allowed (E1) , but small – not found

  27. Y(4660) Z(4430)+ Y(4360) Z(4250)+ Y(4260) X(4160) X(3872) Y(3940) Z(4050)+ J/  J/  J/  D0D*0 Y(4008) _ X(3940) DD 2(3820) _ JPC X(3872) Discovery by Belle 2003 Studied also by CDF,D0, BaBar,LHCb,CMS PDG’12 MX(3872) –(MD0 + MD*0) = -0.16 ± 0.32 MeV _ Relative BF 1 0.8  0.3 0.21  0.06 10 isospin violation   is O(10keV) Most likely interpretation: DD* molecule with admixture of c1(2P) production athigh energy isospin violation Urgent issues : JPC = 1++or2–+ ? absolute BF, lineshape, ...

  28. Y(4660) Z(4430)+ Y(4360) Z(4250)+ Y(4260) X(4160) X(3872) Y(3940) Z(4050)+ Y(4008) _ X(3940) DD 2(3820) JPC States with anomalous decay rates to lower quarkonia : Y(4008) Y(4260) Y(4360) Y(4660) Y(3940) J/ +- from ISR JPC = 1– – (2S) +- J/  typical  > 1MeV c.f. (’’  J/)  50keV recall (5S)  (nS) +- (2170)   +- [Yabsley] preliminary BaBar PRD74,091103R(2006)   O(1MeV) Large for convenrionalcharmonium state! (4040) 1– – supernumerary states (4160) hybrids ? hadrocharmonia ?

  29. arxiv:1204.2158 no Y(4008) Y(4260) (2S) tail or non-res J/+- BABAR PRELIMINARY 420 fb-1 States with anomalous (J/, ’, J/) [Santoro] e+e–  ISR J/ +– e+e–  ISR ’ +– Y(4360) Y(4660) Confirmations of Y(4660) & X(3915) (observed by Belle) No evidence for Y(4008) (reported by Belle)   J/  = Y(3940) X(3915)

  30. Y(4660) Z(4430)+ Y(4360) Z(4250)+ Y(4260) X(4160) X(3872) Y(3940) Z(4050)+ Y(4008) _ X(3940) DD 2(3820) JPC Charged charmonium like states – multiquark candidates Z(4050) Belle: Z(4430) (2S) + and  c1 + but no signal in J/ + Z(4250) produced in B  Z K decays BaBar: no significant signals

  31. _ Study of B  ’+K– at Belle & BaBar M ( ) M ( ) Belle and BaBar data look very similar Belle BaBar Conclusions are different: Belle Dalitz plot fitresult Z(4430)+ Belle: observation of Z(4430)– resonance in (’) channel BaBar: structure is due to contributions of (K) waves Different conclusions are due to different approaches : Belle: Dalitz analysis using isobar model (Breit-Wigner amplitudes, helicity formalizm) description of amplitudes is model-dependent BaBar: fit K helicity angle distribution in M(K) bins (no 2D fit) unphysical behaviour of amplitude is possible High statistics data from LHC can help to clarify

  32. New results on baryons

  33. Beauty baryons 1/2+ 0.4 3/2+ 3/2– 1/2–  3/2+ 0.2  1/2+ 1/2+  0.0 b b b b [Märki, Gorelov] * bb+– * bb+ | | c– + J/– | pK | - arxiv:1205.3452 PRL108,252002(2012) LHCb CMS NEW! CDF confirmed spin-excitation Ground states CDF, D0 First P-wave excitation and b spin-excitation Masses are in agreement w/ expectations P-wave excitation

  34. Exotics: two charged Zb bottomonium-like states in 5 decay modes: (1S)+, (2S)+, (3S)+, hb(1P)+, hb(2P)+ NEW: Zb BB*, Zb’  B*B*, neutral member of isotriplet + * Baryons: spin excitation b , P-wave b baryons, NEW: two N* Summary Many new results from hadronic machines and B- and c-factories Quarkonia: 2 , b(2S) , hb(1P) , hb(2P), b(3P) Ground states & low excitations – no surprises High excitations – progress in clarifying experimental situation, pattern : 1. States close to thresholds w/ molecular structure: X(3872), Zb(10610), Zb(10650) 2. States w/ anomalous partial  to lower quarkonia: 3. States w/ “wrong” masses: X(3940), X(4160) (2170), Y(4260), Y(4360), Y(4660), (5S), charged Z ? _ _ _ Similar phenomena in ss, cc and bb sectors. Some/many of these states cannot be conventional quarkonia. However, the exact interpretation is still unclear. Input from high-statistics measurements is important: LHC, Super B-factories.

  35. Back-up

  36. Search for X(4140) in LHCb Fit to LHCb data

  37. Observation of two new N* NEW! preliminary _ BESIII PWA of (2S)  pp 0 First PWA for baryon spectroscopy from BESIII data

  38. Look at Υ(5S)Υ(nS) p+p- Dalitz distributions for events in Y(nS) signal regions. 9.43 GeV <MM(π+π-) < 9.48 GeV 10.05 GeV <MM(π+π-) < 10.10 GeV 10.33 GeV <MM(π+π-) < 10.38 GeV Υ(1S)π+π- Υ(3S)π+π- Υ(2S)π+π- max M2(ϒπ±) M2(π+π-) M2(π+π-) M2(π+π-) To exclude contamination from gamma conversions we require: M2(π+π-) > 0.16 GeV2 M2(π+π-) > 0.20 GeV2 M2(π+π-) > 0.10 GeV2 Belle PRL 108, 122001

More Related