1 / 43

Ambiguous Nodes in Networked Data based on Measuring Reliable Neighboring Probabilities

Advisor : Prof. Sing Ling Lee Student : Chao Chih Wang Date : 2013.01.04. Ambiguous Nodes in Networked Data based on Measuring Reliable Neighboring Probabilities. Outline. Introduction Network data Traditional VS Networked data Classification Collective Classification ICA

chill
Download Presentation

Ambiguous Nodes in Networked Data based on Measuring Reliable Neighboring Probabilities

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Advisor : Prof. Sing Ling Lee Student : Chao Chih Wang Date : 2013.01.04 Ambiguous Nodes in Networked Data based on Measuring Reliable Neighboring Probabilities

  2. Outline • Introduction • Network data • TraditionalVS Networked data Classification • Collective Classification • ICA • Problem • Our Method • Collective Inference With Ambiguous Node (CIAN) • Experiments • Conclusion

  3. Introduction – Network data • traditional data: • instances are independent of each other • network data: • instances are maybe related to each other • application: • emails • web page • paper citation independent related

  4. Introduction – Network data

  5. Introduction • traditionalVS network data classification 1 Class: 1 2 A A 1 E E D D 2 B : Class 1 F F B B 2 G G C C H H

  6. Introduction – Collective Classification • To classify interrelated instances using content features and link features. D D: E: 1 A B 1 1 0 0 1 1 0 2 1 1 0 2 0 0 2 + C E 1/2 1/2 0 1 0 0 1 0 0 1 We use : 1/2 1/2 0 2 1

  7. Introduction – ICA • ICA : Iterative Classification Algorithm Initial : Training local classifier use content features to predict unlabel instances Iterative{ for predict each unlabeled instance { set unlabeled instance ’s link feature use local classifier to predict unlabeled instance } } step1 step2

  8. Introduction – ICA Example unlabel data: Training data: training data: Class : 1 2 3 3 1 H C 2 3 A 3 1 B 2 1 2 2/3 0 1/3 1 A: 3 1/3 1/3 1/3 D E 2 I 3 1 F 1 1 G 2 1/2 1/2 0 B: 2 1/4 1/2 1/4

  9. Problem – AmbiguousNode C A • label the wrong class • judge the label with difficulty • make a mistake B G D 2 E F 2 1 1 1 1 or 2 ? 2 1

  10. Problem – use ICA Training data True class : unlabel data: B A C 2 2 1 training data: 1 A G 1 1 1 C F 1 2 D J 2 • Ambiguous B 1 1 I 2 1 2/3 1/3 0 A: 1 2 E 1 2/3 1/30 1 H C:

  11. Idea • Make a new prediction for neighbors of unlabeled instance • Use probability to compute link feature • Retrain the CC classifier

  12. Our Method –Method #1 • compute link feature • use probability General method : Class 1 : 1/3 Class 2 : 1/3 Class 3 : 1/3 A 1 3 2 ( 1 , 80%) ( 3 , 70%) Our method: Class 1 : 80/(80+60+70) Class 2 : 60/(80+60+70) Class 3 : 70/(80+60+70) ( 2, 60%)

  13. Our Method –Method #2 True class : B A To predict unlabeled instance ’s neighbors again. C 2 2 1 A A G G 1 1 1 1 C C 1 1 F F D D ( 1 , 70%) ( 1 , 70%) 2 2 ( 1 , 70%) ( 2, 80%) ( 1 , 70%) ( 2, 80%) 1 1 ( 2 , 80%) ( 2 , 80%) • Noise • Ambiguous B B ( 1 , 70%) ( 1 , 70%) 2 2 E E ( 2, 90%) ( 2, 60%) predict again predict again 2 2 1 1 1 1 H H B is ambiguous node. B is noise node.

  14. Our Method –Method #2 • To predictunlabeled instance ’s neighbors again • first iteration needs to predict again • difference between originaland predict label : • This iterationdoesn’t to adopt • Next iterationneed to predict again • similarity between originaland predict label : • Average the probability • Next iterationdoesn’t need to predict again A Example: new prediction ( 2, 60%) ( 2, 80%) 1 2 1 C B ( 2, 70%) ( 2, 60%) ( 2, 60%) ( 1 , 80%)

  15. Our Method –Method #2 x’sTrue label : 2 2 w • Ambiguous x z 1 3 y ( 1 , 60%) ( 3 , 60%) ( 2 , 70%) new prediction ( 2 , 70%) ( 3 , 60%) ( 2 , 80%) x is ambiguous (ornoise) node: Method B >Method C > Method A ( ? , ??%) ( 3 , 60%) ( 2 , 75%) x is notambiguous (ornoise) node: Method A >Method C > Method B x: Method A : (1 , 50%) Method B : (2 , 60%) Method C : (1 , 0%) not change class 2 Method A & Method B is too extreme. So we choose the Method C. change class not adopt

  16. Our Method –Method #2 Accuracy

  17. Our Method –Method#3 • Retrain CC classifier Initial ( ICA ) D A B 1 2 + E C retrain ( 3 , 70%) ( 1 , 80%) D 3 A ( 2 , 70%) 1 B 2 1 1 + 2 E C ( 2, 60%) ( 1 , 90%)

  18. CIAN Example – Ambiguous Training data True label: unlabel data: B A C training data: 2 2 1 B: 2 1 ( 1 , 60%) G ( 2 , 60%) ( 1 , 60%) A 2 1 1 predict again C ( 1 , 80%) 1 1 ( 2 , 80%) ( 2 , 60%) ( 1 , 80%) 2 ( 2 , 80%) D F 2 1 1/2 1/2 0 Our: • Ambiguous B 1 ( 1 , 70%) 2 ICA: E ( 2 , 80%)

  19. CIAN Example – Noise Training data True label: unlabel data: B A C training data: 2 2 1 B: 2 1 ( 1 , 70%) ( 1 , 60%) G ( 2 , 70%) A 2 1 1 predict again C ( 1 , 80%) 1 1 ( 2 , 80%) ( 2 , 80%) ( 1 , 80%) 2 ( 2 , 80%) D F 1 Our: • Noise B 1 2 ( 1 , 70%) 1/2 1/2 0 2 E ( 2 , 80%) ICA:

  20. CIAN • CIAN : Collective Inference With Ambiguous Node Initial : Training local classifier use content features to predict unlabel instances Iterative{ for predict each unlabel instance { for nb unlabeled instance ’s neighbors{ if(need to predict again) (class label, probability ) = local classifier(nb) } set unlabel instance ’s link feature (class label, probability ) = local classifier(A) } retrain local classifier } step1 step2 step3 step4 step5

  21. Experiments -Data sets

  22. Experiments-Experimental setting fixed argument ‧Compare with CO、ICA、CIAN

  23. Experiments • 1. misclassified nodes • Proportion of misclassified nodes (0%~30% , 80%) • 2. ambiguous nodes • NB vs SVM • 3. misclassified and Ambiguous nodes • Proportion of misclassified and ambiguous nodes (0%~30% , 80%) • 4.iteration & stable • number of iterations

  24. Experiments – 1. misclassified • Cora

  25. Experiments – 1. misclassified • CiteSeer

  26. Experiments – 1. misclassified • WebKB-texas

  27. Experiments – 1. misclassified • WebKB-washington

  28. Experiments – 1. misclassified • 80% of misclassifiednodes

  29. Experiments – 2. ambiguous • Cora Max ambiguous nodes : 429 Max ambiguous nodes : 356

  30. Experiments – 2. ambiguous • CiteSeer Max ambiguous nodes : 590 Max ambiguous nodes : 365

  31. Experiments – 2. ambiguous • WebKB-texas Max ambiguous nodes : 52 Max ambiguous nodes : 20

  32. Experiments – 2. ambiguous • WebKB-washington Max ambiguous nodes : 33 Max ambiguous nodes : 31

  33. Experiments – 2. ambiguous ‧ How much the same ambiguous nodes between NB and SVM?

  34. Experiments – 3. misclassified and ambiguous • Cora

  35. Experiments – 3. misclassified and ambiguous • CiteSeer

  36. Experiments – 3. misclassified and ambiguous • WebKB-texas

  37. Experiments – 3. misclassified and ambiguous • WebKB-washington

  38. Experiments – 3. misclassified and ambiguous • 80% of misclassified and ambiguousnodes

  39. Experiments ‧ When the accuracy of ICA is lower than CO?

  40. Experiments – 4. iteration & stable • Cora

  41. Experiments – 4. iteration & stable • CiteSeer

  42. Experiments – 4. iteration & stable • WebKB-texas

  43. Experiments – 4. iteration & stable • WebKB-washington

More Related