1 / 11

Review

Review. Standard Gibbs Free Energy.  G o =.  H o. - T  S o. spontaneous. G o < 0. G o = - 30.5 kJ/mol. non-spontaneous. G o > 0. G o = + 16.7 kJ/mol. G o = 0. equilibrium. G o = - 13.8 kJ/mol. . glucose-6-phosphate. + H 2 O. + phosphate. glucose. + H 2 O .

cathytravis
Download Presentation

Review

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Review Standard Gibbs Free Energy Go = Ho - TSo spontaneous Go < 0 Go = - 30.5 kJ/mol non-spontaneous Go > 0 Go = + 16.7 kJ/mol Go = 0 equilibrium Go = - 13.8 kJ/mol  glucose-6-phosphate + H2O + phosphate glucose + H2O  ADP ATP + phosphate  ADP + glucose-6-phosphate glucose + ATP

  2. Non-standard conditions = [products] m reaction quotient Q = initial [reactants] n initial equilibrium constant K = = [products] m equilibrium [reactants] n equilibrium /Q G = - RT ln ( ) K G < 0 K > Q spontaneous G > 0 non-spontaneous K < Q G = 0 K = Q equilibrium

  3. Go G = - RT ln(K/Q) Impose Standard conditions: [reactants]initial = 1(M or atm) = [products]initial Q = 1 G = - RT ln(K) o Standard Free Energy

  4. Non-Standard Conditions G = Go + RT ln Q G = - RT ln (K/Q) Go = - RT ln K ln (a/b) = ln a - ln b G = - RT ln (K/Q) = + RT ln Q -RT ln K

  5. Go = - RT ln(K) + phosphate  glucose-6-phosphate + H2O glucose -RT -RT /Q G = - RT ln ( ) K G < 0 [products] initial [reactants] initial standard conditions non-spontaneous Go = 16.7 kJ/mol = -RT ln K K = 1.2 x 10-3 Q < K < 1.2 x 10-3 non-standard conditions Q = start with no product spontaneous

  6. Non-Standard Conditions 2NO2 (g) N2O4 (g) G = Go + RT ln Q Initially [NO2] = 0.3 M [N2O4] = 0.5 M Will more products or reactantsbe formed? Q = 0.5 / 0.32 = 5.6

  7. Non-Standard Conditions 2NO2 (g) N2O4 (g) G = Go + RT ln Q Initially [NO2] = 0.3 M [N2O4] = 0.5 M Gorxn= Gof products - Gof reactants = 97.8 - - 4.8 kJ/mol 2(51.3) = Grxn= = -0.5 kJ/mol -4.8 + (8.314 x 10-3)(298) ln 5.6 More will be formed a) product b) reactant

  8. G = -RT ln (K/Q)  K = [C]e Q = [C]i A +B C [A]e[B]e [A]i[B]i Le Chatelier’s Principle a) increase b) decrease decrease Q K/Q > 1 Add A Add B G > < 0 Remove A increase Q K/Q < 1

  9. Temperature dependence of K exothermic reaction heat = product favor reaction a) forward b)reverse at low T favor reaction reverse at high T reactant endothermic reaction heat = favor reaction reverse at low T favor reaction forward at high T

  10. 1 T Temperature dependence of K Go =  Ho - TSo Go = -RT ln K  Ho - TSo -RT ln K = - Ho R + So R ln K = + ln K m b y x exothermic Ho < 0 1/T increase T decrease K T

  11. 1 T Temperature dependence of K Go =  Ho - TSo Go = -RT ln K -RT ln K =  Ho - TSo - Ho R + So R ln K = - ln K m b y x endothermic H > 0 1/T T increase T increase K

More Related