William greene stern school of business new york university
Download
1 / 47

Frontier Models and Efficiency Measurement Lab Session 1 - PowerPoint PPT Presentation


  • 143 Views
  • Uploaded on

William Greene Stern School of Business New York University. Frontier Models and Efficiency Measurement Lab Session 1. 0 Introduction 1 Efficiency Measurement 2 Frontier Functions 3 Stochastic Frontiers 4 Production and Cost 5 Heterogeneity 6 Model Extensions 7 Panel Data

loader
I am the owner, or an agent authorized to act on behalf of the owner, of the copyrighted work described.
capcha
Download Presentation

PowerPoint Slideshow about ' Frontier Models and Efficiency Measurement Lab Session 1' - cade-foley


An Image/Link below is provided (as is) to download presentation

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.


- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -
Presentation Transcript
William greene stern school of business new york university

William Greene

Stern School of Business

New York University

Frontier Models and Efficiency MeasurementLab Session 1

0 Introduction

1 Efficiency Measurement

2 Frontier Functions

3 Stochastic Frontiers

4 Production and Cost

5 Heterogeneity

6 Model Extensions

7 Panel Data

8 Applications



William greene stern school of business new york university1

William Greene

Stern School of Business

New York University

Frontier Models and Efficiency MeasurementLab Session 1: Operating NLOGIT

0 Introduction

1 Efficiency Measurement

2 Frontier Functions

3 Stochastic Frontiers

4 Production and Cost

5 Heterogeneity

6 Model Extensions

7 Panel Data

8 Applications


Lab session 1
Lab Session 1

  • Operating NLOGIT

  • Basic Commands - Transformations

  • Linear Regression/Panel Data Application: Panel data on Spanish Dairy Farms

    • Estimating the linear model

    • Testing a hypothesis

    • Examining residuals



Entering data for analysis
Entering Data for Analysis

  • IMPORT: ASCII, Excel Spreadsheets, other formats: .txt, .csv, .txt

  • READ: other programs.dta (stata), .xls (excel)

  • LOAD existing data sets in the form of LIMDEP/NLOGIT ‘Project Files’ – SAVED from earlier sessions or data preparations.lpj (nlogit, limdep, Stat Transfer)

  • Internal data editor


Sample data set dairy lpj
Sample data set: dairy.lpj

  • Panel Data on Spanish Dairy Farms

  • Use for a Production Function Study

  • Raw: Milk,Cows,Land, Labor, Feed

  • Transformed

    • yit = log(Milk)

    • x1, x2, x3, x4 = logs of inputs

    • x11 = .5*x12, x12 = x1*x2, etc.

    • year93 = dummy variable for year,…


Data on spanish dairy farms
Data on Spanish Dairy Farms

N = 247 farms, T = 6 years (1993-1998)



Project window
Project Window

Project window displays the data set currently being analyzed:

Variables

Matrices

Other program related results


Instructing limdep to do something
Instructing LIMDEP to do something

  • Menus – available but we will generally not use them

  • Command language – entered in an editor then ‘submitted’ to the program



Text editing window
Text Editing Window

Commands will be entered in this window and submitted from here


Typing commands in the editor
Typing Commands in the Editor

Spacing and capitalization never matter. Just type instructions so they are easily readable and contain the right information.


When you open a .lim file, it creates a new editing window for you. Submit the existing commands, modify them then submit, or type new commands in the same window.


Submitting commands
“Submitting” Commands for you. Submit the existing commands, modify them then submit, or type new commands in the same window.

  • One line command

    • Place cursor on that line

    • Press “Go” button

  • More than one command or command on more than one line

    • Highlight all lines (like any text editor)

    • Press “Go” button


The go button
The GO Button for you. Submit the existing commands, modify them then submit, or type new commands in the same window.

There is a STOP button also. You can use it to interrupt iterations that seem to be going nowhere. It is red (active) during iterations.


Where do results go
Where Do Results Go? for you. Submit the existing commands, modify them then submit, or type new commands in the same window.

  • On the screen in a third window that is opened automatically

  • In a text file if you request it.

  • To an Excel CSV file if you EXPORT them

  • Internally to matrices, variables, etc.


Standard Three Window Operation for you. Submit the existing commands, modify them then submit, or type new commands in the same window.

Commands typed in editing window

Project window shows variables in the data set

Results appear in output window


Command structure
Command Structure for you. Submit the existing commands, modify them then submit, or type new commands in the same window.

  • VERB ; instruction ; … ; … $

    • Verb must be present

    • Semicolons always separate subcommands

    • ALL commands end with $

  • Case never matters in commands

  • Spaces are always ignored

  • Use as many lines as desired, but commands must begin on a new line


Important commands
Important Commands: for you. Submit the existing commands, modify them then submit, or type new commands in the same window.

  • CREATE ; Variable = transformation $

    • Create ; LogMilk = Log(Milk) $

    • Create ; LMC = .5*Log(Milk)*Log(Cosw) $

    • Create ; … any algebraic transformation $

  • SAMPLE ; first - last $

    • Sample ; 1 – 1000 $

    • Sample ; All $

  • REJECT ; condition $

    • Reject ; Cows < 20 $


Model command
Model Command for you. Submit the existing commands, modify them then submit, or type new commands in the same window.

  • Model ; Lhs = dependent variable

    ; Rhs = list of independent variables $

    • Regress ; Lhs=Milk ; Rhs=ONE,Feed,Labor,Land $

    • ONE requests the constant term - mandatory

    • Typically many optional variations

  • Models are REGRESS, FRONTIER, PROBIT, POISSON, LOGIT, TOBIT, … and over 100 others. All have the same form.

    • Variants of models such as Poisson / NegBinomial

    • Several hundred different models altogether


Model command with sample definition
Model Command for you. Submit the existing commands, modify them then submit, or type new commands in the same window.with Sample Definition

  • Model ; If [ condition ] ; Lhs = … ; Rhs = … ; etc. $

  • FRONTIER ; If [Year = 1988] ; Lhs = yit ; Rhs = one,x1,x2,x3,x4 ; Model = Rayleigh $


Name conventions
Name Conventions for you. Submit the existing commands, modify them then submit, or type new commands in the same window.

  • CREATE ; Name = any function desired $

  • Name is the name of a new variable

    • No more than 8 characters in a name

    • The first character must be a letter

    • May not contain -,+,*,/.

    • Use letters A – Z, digits 0 – 9 and _

    • May contain _.


Two useful features
Two Useful Features for you. Submit the existing commands, modify them then submit, or type new commands in the same window.

NAMELIST ; listname = a group of names $

Listname is any new name.

After the command, it is a synonym for the list

NAMELIST ; CobbDgls=One,LogK,LogL $

REGRESS ;Lhs = LogY ; Rhs = CobbDgls $

*= All names

DSTAT ; RHS = * $

REGRESS ; Lhs = Q ; Rhs = One, LOG* $


A useful tool calculator
A Useful Tool - Calculator for you. Submit the existing commands, modify them then submit, or type new commands in the same window.

CALC ; List ; any expression $

CALC ; List ; 1 + 1 $

CALC ; List ; FTB ( .95,3,1482) $

(Critical point from F table)

CALC ; List ; Name = any expression $

Saves result with name so it can be

used later.

CALC ; Chisq=2*(LogL – Logl0) $

;LIST may be omitted. Then result is computed but not displayed


Matrix algebra
Matrix Algebra for you. Submit the existing commands, modify them then submit, or type new commands in the same window.

Large package; integrated into the program.

NAMELIST ; X = One,X1,X2,X3,X4 $

MATRIX ; bols = <X’X> * X’y $

CREATE ; e = y – X’bols $

CALC ; s2 = e’e / (N – Col(X)) $

MATRIX ; Vols =s2 * <X’X> ;Stat(bols,Vols,X) $

Over 100 matrix functions and all of matrix algebra are supported. Use with CREATE, CALC, and model estimators.


Regression results
Regression Results for you. Submit the existing commands, modify them then submit, or type new commands in the same window.

  • Model estimates on screen in the output window

  • Matrices B and VARB

  • Scalar results

  • New Variables if requested, e.g., residuals

  • Retrievable table of regression results


Results on the Screen in the Output Window for you. Submit the existing commands, modify them then submit, or type new commands in the same window.


Matrices B and VARB. Double click names to open windows. Use B and VARB in other MATRIX computations and commands.



Regression analysis testing cobb douglas vs translog
Regression Analysis: Testing Cobb-Douglas vs. Translog computations

NAMELIST ; cobbdgls = one,x1,x2,x3,x4 $

NAMELIST ; quadrtic =x11,x22,x33,x44,x12,x13,x14,x23,x24,x34 $

NAMELIST ; translog = cobbdgls,quadrtic $

DSTAT ; Rhs=*$

REGRESS ; Lhs = yit ; Rhs = cobbdgls $

CALC ; loglcd = logl ; rsqcd = rsqrd $

REGRESS ; Lhs = yit ; Rhs= translog $

CALC ; logltl = logl ; rsqtl = rsqrd $

CALC ; dfn = Col(translog) – Col(cobbdgls) $

CALC ; dfd = n – Col(translog) $

CALC ; list ; f=((rsqtl – rsqcd)/dfn) / ((1 - rsqtl)/dfd)$

CALC ; list ; cf = ftb(.95,dfn,dfd) $

CALC ; list ; chisq = 2*(logltl – loglcd) $

CALC ; list ; cc = Ctb(.95,dfn) $

Built in F and Chi squared tests

REGRESS ; Lhs = yit ; Rhs = translog ; test: quadrtic $


Exiting the program
Exiting the Program computations



Lab exercises with dairy farm data
Lab Exercises with Dairy Farm Data computations

  • Fit a linear regression with robust covariance matrix

  • Fit the linear model using least absolute deviations and quantile regression

  • Test for time effects in the model

  • Use a Wald test for the translog model

  • Test for constant returns to scale

  • Analyze residuals for nonnormality


ad