1 / 13

Simple Machines

Simple Machines. Spring 2014. Simple Machines. Inclined Plane.

bess
Download Presentation

Simple Machines

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Simple Machines Spring 2014

  2. SimpleMachines

  3. Inclined Plane A plane is a flat surface. When that plane is inclined, or slanted, it can help you move objects across distances and that's work! A common inclined plane is a ramp. Lifting a heavy box onto a loading dock is much easier if you slide the box up a ramp--a simple machine.

  4. Wedge • You can use the edge of an inclined plane to push things apart. Then, the inclined plane is a wedge. So, a wedge is actually a kind of inclined plane. An axe blade is a wedge. Think of the edge of the blade. It's the edge of a smooth slanted surface.

  5. Screw A screw an inclined plane wrapped around a cylinder. A screw can convert a rotational force (torque) to a linear force and vice versa.

  6. Lever • Any tool that pries something loose is a lever. A lever is a rigid bar that "pivots" (or turns) against a "fulcrum" (or a fixed point).

  7. Wheel and Axle • It is two circular objects attached together about a common axis • Wheel is the large cylinder • Axle is the small cylinder

  8. Pulley • In a pulley, a cord wraps around a wheel. As the wheel rotates, the cord moves in either direction. Now, attach a hook to the cord, and you can use the wheel's rotation to raise and lower objects.

  9. Energy, Work, Power, & Machines • 8.The mechanical advantage is the number of times a machine multiplies an effort force. Mechanical advantage can be calculated by the following equations: • AMA = Fr IMA = de Fedr • AMA = actual mechanical advantage (real life) • IMA = ideal mechanical advantage (pretend) • Fr = resistance force de = effort distance • Fe = effort force d r = resistance distance • 9. The mechanical advantage of a pulley system is determined by counting the number of strands of rope that support the resistance force.

  10. Energy, Work, Power, & Machines • 10.Work input is always greater than work output due to friction. Win= W out Fe x de = Fr x d r • Win = work input (J) • W out=work output (J) • Fe= effort force (N) • de= effort distance (m) • Fr =force of the resistance (N) • d r=how far the resistance moved (m)

  11. Energy, Work, Power, & Machines • 11.Efficiencyis a measure of how much of the work put into a machine is changed to work put out by the machine. • Efficiency is calculated using the following formula: • efficiency = W out x 100% Win • efficiency = AMA x 100% IMA

  12. Efficiency of a Machine 12.The amount of work obtained from a machine is always less than the amount of work put into it. This is because work is lost to friction. Efficiency = output work / input work x 100 Remember that work = force x distance

  13. Energy, Work, Power, & Machines • 13. Compound machines consist of two or more simple machines. A pencil sharpener is an example of a compound machine.

More Related