1 / 10

Introduction to Computer Vision

Lecture 07 Roger S. Gaborski. Introduction to Computer Vision. QUIZ 2. Simple 1 D Averaging Example. 3 point moving average 5 point moving average. Simple 1 D Averaging Example. 3 point moving average 5 point moving average NEED FOR PADDING. Padding an array -- padarray.

Download Presentation

Introduction to Computer Vision

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Lecture 07 Roger S. Gaborski Introduction to Computer Vision Roger S. Gaborski

  2. QUIZ 2

  3. Simple 1 D Averaging Example • 3 point moving average • 5 point moving average

  4. Simple 1 D Averaging Example • 3 point moving average • 5 point moving average • NEED FOR PADDING

  5. Padding an array -- padarray • fp = padarray(f, [r c], method, direction) • f is input image • fp is padded image • [r c] is number of rows and columns to pad f • method and direction – next slide Roger S. Gaborski

  6. Chapter 3 www.prenhall.com/gonzalezwoodseddins Roger S. Gaborski

  7. padarray Example >> f = [1 2; 3 4] f = 1 2 3 4 >> fp = padarray(f, [3 2], 'replicate', 'post') fp = 1 2 2 2 3 4 4 4 3 4 4 4 3 4 4 4 3 4 4 4 Post – pad after the last element in both directions [3 2] – pad 3 rows and 2 columns Roger S. Gaborski

  8. >> fp = padarray(f, [2 1], 'replicate', 'post') fp = 1 2 2 3 4 4 3 4 4 3 4 4 Post – pad after the last element in both directions [2 1] – pad 2 rows and 1 columns Roger S. Gaborski

  9. >> f = [1 2 3; 1 2 3; 1 2 3] f = 1 2 3 1 2 3 1 2 3 >> fp = padarray(f, [2 2], 'symmetric', 'both') fp = ?????? Roger S. Gaborski

  10. >> f = [1 2 3; 1 2 3; 1 2 3] f = 1 2 3 1 2 3 1 2 3 >> fp = padarray(f, [2 2], 'symmetric', 'both') fp = 2 1 1 2 3 3 2 2 1 1 2 3 3 2 2 1 1 2 3 3 2 2 1 1 2 3 3 2 2 1 1 2 3 3 2 2 1 1 2 3 3 2 2 1 1 2 3 3 2 Roger S. Gaborski

More Related