Lecture 4 dr roger s gaborski
This presentation is the property of its rightful owner.
Sponsored Links
1 / 74

Introduction to Computer Vision PowerPoint PPT Presentation


  • 53 Views
  • Uploaded on
  • Presentation posted in: General

Lecture 4 Dr. Roger S. Gaborski. Introduction to Computer Vision. HW#2 Due 02/13. In Class Exercise Review. 1. Given the following MATLAB code: >> image1 = rand([3]) image1 = 0.9500 0.6555 0.0318 0.7431 0.1712 0.2769 0.3922 0.7060 0.0462

Download Presentation

Introduction to Computer Vision

An Image/Link below is provided (as is) to download presentation

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.


- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -

Presentation Transcript


Lecture 4 dr roger s gaborski

Lecture 4

Dr. Roger S. Gaborski

Introduction to Computer Vision

Roger S. Gaborski


Hw 2 due 02 13

HW#2 Due 02/13

Roger S. Gaborski


In class exercise review

In Class Exercise Review

1. Given the following MATLAB code:

>> image1 = rand([3])

image1 =

0.9500 0.6555 0.0318

0.7431 0.1712 0.2769

0.3922 0.7060 0.0462

>> image2 = imadjust(image1, [ .1,.75],[.2, .6])

Carefully draw the transformation map specified by the imadjust statement.

Label the x and y axis.

Roger S. Gaborski


Introduction to computer vision

  • Characteristics:

  • gamma >1: all pixels become darker

  • gamma <1: all pixels become brighter

  • gamma =1: linear transform

Gamma specifies the shape of the curve

Brighter Output (gamma<1) Darker Output (gamma>1)

Chapter 3

www.prenhall.com/gonzalezwoodseddins

Roger S. Gaborski


Introduction to computer vision

image1 =

0.9500 0.6555 0.0318

0.7431 0.1712 0.2769

0.3922 0.7060 0.0462

>> image2 = imadjust(image1, [ .1,.75],[.2, .6])

image2 =

0.6000 0.5418 0.2000

0.5958 0.2438 0.3089

0.3798 0.5729 0.2000

Roger S. Gaborski


Example

Example

0 .1 2 .3 .4 .5 .6 .7 .8 .9 1.0 OUTPUT

0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1.0

Roger S. Gaborski

INPUT


I mage2 imadjust image1 1 75 2 6 1

image2 = imadjust(image1, [ .1,.75],[.2, .6],1)

0 .1 2 .3 .4 .5 .6 .7 .8 .9 1.0 OUTPUT

0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1.0

Roger S. Gaborski

INPUT


Image2 imadjust image1 1 75 2 6 1

image2 = imadjust(image1, [ .1,.75],[.2, .6],1)

0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1.0 OUTPUT

0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1.0

Roger S. Gaborski

INPUT


Gray scale ramp image

Gray Scale Ramp Image

Minimum gray value = .01

Maximum gray value = 1.0

Roger S. Gaborski


Introduction to computer vision

Roger S. Gaborski


Ramp image

Ramp Image

image_ramp = zeros(100);

for i = 1:100

image_ramp(:,i) = i*.01;

end

fprintf('minimum gray value = %d, \n', min(image_ramp(:)));

fprintf('maximun gray value = %d, \n', max(image_ramp(:)));

figure, plot(image_ramp(50,:)), xlabel('pixel position'), ylabel('pixel value')

title('values')

pause

figure, imshow(image_ramp),title('ramp intensity image')

pause

Roger S. Gaborski


Map 01 to 5 and 1 0 to 75

Map .01 to .5 and 1.0 to .75

Roger S. Gaborski


Introduction to computer vision

disp('Use imadjust to map to .50 to .75');

image1 = imadjust(image_ramp,[.01, 1.0],[.5, 0.75]); %map to .5 to .75

fprintf('minimum gray value = %d, \n', min(image1(:)));

fprintf('maximun gray value = %d, \n', max(image1(:)));

figure, plot(image1(50,:)), xlabel('pixel position'), ylabel('pixel value')

title('values')

axis([0,100,0,1])

Grid

pause

figure, imshow(image1, [0,1]);

pause

Roger S. Gaborski


Map 01 to 5 and 1 0 to 751

Map .01 to .5 and 1.0 to .75

Roger S. Gaborski


Map values in range 25 to 35 and 50 to 65

Map values in range <=.25 to .35 and >=.50 to .65');

Roger S. Gaborski


M ap values in range 25 to 35 and 50 to 65

Map values in range <=.25 to .35 and >=.50 to .65');

disp('Use imadjust to map values in range <=.25 to .35 and >=.50 to .65');

image2 = imadjust(image_ramp,[.25, .50],[.35, 0.65]);

fprintf('minimum gray value = %d, \n', min(image2(:)));

fprintf('maximun gray value = %d, \n', max(image2(:)));

figure, plot(image2(50,:)), xlabel('pixel position'), ylabel('pixel value')

title('values')

axis([0,100,0,1])

grid

pause

figure, imshow(image2, [0,1]);

Roger S. Gaborski


Map values in range 25 to 35 and 50 to 651

Map values in range <=.25 to .35 and >=.50 to .65');

Roger S. Gaborski


Contrast stretching transformation

Contrast Stretching Transformation

  • Creates an image with higher contrast than the input image:

    • r: intensities of input;

    • s: intensities of output;

    • m: threshold point (see graph) ;

    • E: controls slope.

Roger S. Gaborski


Introduction to computer vision

Chapter 3

www.prenhall.com/gonzalezwoodseddins

E controls the slope of the function

Roger S. Gaborski


Introduction to computer vision

Output(s)

Input(r)

Roger S. Gaborski


Introduction to computer vision

Introduction to Computer Vision

Lecture 4

Dr. Roger S. Gaborski


Introduction to computer vision

Intensity image is simply

a matrix of numbers

We can summary this information

by only retaining the distribution

if gray level values:

PARTIAL IMAGE INFO:

117 83 59 59 68 77 84

94 82 67 62 70 83 86

85 81 71 65 77 89 86

82 76 67 72 90 97 86

66 54 68 104 121 107 85

46 58 89 138 165 137 91

38 80 147 200 211 187 138

40 80 149 197 202 187 146

56 76 114 159 181 160 113

An image shows the spatial

distribution of gray level values

Roger S. Gaborski


Image histogram

Image Histogram

Plot of Pixel Count as a Function of Gray Level Value

Pixel

Count

Gray Level Value

Roger S. Gaborski


Histogram

Histogram

  • Histogram consists of

    • Peaks: high concentration of gray level values

    • Valleys: low concentration

    • Flat regions

Roger S. Gaborski


Formally image histograms

Formally, Image Histograms

Histogram:

  • Digital image

  • L possible intensity levels in range [0,G]

  • Defined: h(rk) = nk

    • Where rk is the kth intensity level in the interval [0,G] and nk is the number of pixels in the image whose level is rk .

    • G: uint8 255

      uint16 65535

      double 1.0

Roger S. Gaborski


Notation

Notation

  • L levels in range [0, G]

  • For example:

    • 0, 1, 2, 3, 4, in this case G = 4, L = 5

    • Since we cannot have an index of zero,

      • In this example, index of:

        Index 1 maps to gray level 0

        2 maps to 1

        3 maps to 2

        4 maps to 3

        5 maps to 4

Roger S. Gaborski


Normalized histogram

Normalized Histogram

  • Normalized histogram is obtained by dividing elements of h(rk) by the total number of pixels in the image (n):

    fork = 1, 2,…, L

    p(rk) is an estimate of the probability of occurrence of intensity level rk

Roger S. Gaborski


Matlab histogram

MATLAB Histogram

  • h = imhist( f, b )

    • h is the histogram, h(rk)

    • f is the input image

    • b is the number of bins (default is 256)

  • Normalized histogram

Roger S. Gaborski


Color and gray scale images

Color and Gray Scale Images

Roger S. Gaborski


Background gray image

Background: Gray Image

>> I = imread('Flags.jpg');

>> figure, imshow(I) % uint8

>> Im= im2double(I); % convert to double

>> Igray = (Im(:,:,1)+Im(:,:,2)+Im(:,:,3))/3;

>> figure, imshow(Igray)

There is also the rgb2gray function that results

in a slightly different image

Roger S. Gaborski


Gray scale histogram

Gray Scale Histogram

Roger S. Gaborski


Plots

Plots

  • bar(horz, v, width)

    • v is row vector

      • points to be plotted

    • horz is a vector same dimension as v

      • increments of horizontal scale

      • omitted  axis divided in units 0 to length(v)

    • width number in [0 1]

      • 1 bars touch

      • 0 vertical lines

      • 0.8 default

Roger S. Gaborski


Introduction to computer vision

p= imhist(Igray)/numel(Igray);

>> h1 = p(1:10:256);

>> horz = (1:10:256);

>> figure, bar(horz,h1)

Review other examples

in text and in MATLAB

documentation

Roger S. Gaborski


Introduction to computer vision

Chapter 3

www.prenhall.com/gonzalezwoodseddins

Roger S. Gaborski


Color and gray scale images recall from previous slide

Color and Gray Scale ImagesRecall from Previous Slide

Roger S. Gaborski


Gray scale histogram1

Gray Scale Histogram

Roger S. Gaborski


Normalized gray scale histogram

Normalized Gray Scale Histogram

>> p= imhist(Igray)/numel(Igray);

>> figure, plot(p)

Roger S. Gaborski


Normalized gray scale histogram1

Normalized Gray Scale Histogram

256 bins

32 bins

imhist(Igray)/numel(Igray); imhist(Igray,32)/numel(Igray)

Roger S. Gaborski


Normalized gray scale histogram2

Normalized Gray Scale Histogram

>> p= imhist(Igray)/numel(Igray);

>> figure, plot(p)

probability

Gray level values

Roger S. Gaborski


Introduction to computer vision

OriginalDarkLight

Roger S. Gaborski


Contract enhancement

Contract enhancement

  • How could we transform the pixel values of an image so that they occupy the whole range of values between 0 and 255?

Roger S. Gaborski


Gray scale transformation

Gray Scale Transformation

  • How could we transform the pixel values of an image so that they occupy the whole range of values between 0 and 255?

  • If they were uniformly distributed between 0 and x we could multiply all the gray level values by 255/x

  • BUT – what if they are not uniformly distributed??

Roger S. Gaborski


Cumulative distribution function

Cumulative Distribution Function

Histogram CDF

Roger S. Gaborski


Histogram equalization he

Histogram Equalization(HE)

  • HE generates an image with equally likely intensity values

  • Transformation function: Cumulative Distribution Function (CDF)

  • The intensity values in the output image cover the full range, [0 1]

  • The resulting image has higher dynamic range

  • The values in the normalized histogram are approximately the probability of occurrence of those values

Roger S. Gaborski


Histogram equalization

Histogram Equalization

  • Let pr(rj), j = 1, 2, … , L denote the histogram associated with intensity levels of a given image

  • Values in normalized histogram are approximately equal to the probability of occurrence of each intensity level in image

  • Equalization transformation is:

k = 1,2,…,L

sk is intensity value

of output

rk is input value

Sum of probability up to k value

Roger S. Gaborski


Histogram equalization example

Histogram Equalization Example

  • g = histeq(f, nlev) where f is the original image and nlev number of intensity levels in output image

Roger S. Gaborski


Introduction to computer vision

Original Image

INPUT

Roger S. Gaborski


Transformation

Transformation

x255

Output Gray Level Value

Input Gray Level Value

Roger S. Gaborski


Introduction to computer vision

Equalization of Original Image

OUTPUT

Roger S. Gaborski


Introduction to computer vision

Roger S. Gaborski


Introduction to computer vision

Roger S. Gaborski


Simple histogram equalization example

Simple Histogram Equalization Example

Roger S. Gaborski


Histogram equalization1

Histogram Equalization

Input ImageOutput Image

Roger S. Gaborski


Adaptive equalization

Adaptive Equalization

  • g = adapthisteq(f, parameters..)

  • Contrast-limited adaptive histogram equalization

  • Process small regions of the image (tiles) individually

  • Can limit contrast in uniform areas to avoid noise amplification

Roger S. Gaborski


Introduction to computer vision

>> help adapthisteq

adapthisteq Contrast-limited Adaptive Histogram Equalization (CLAHE).

adapthisteq enhances the contrast of images by transforming the

values in the intensity image I. Unlike HISTEQ, it operates on small

data regions (tiles), rather than the entire image. Each tile's

contrast is enhanced, so that the histogram of the output region

approximately matches the specified histogram. The neighboring tiles

are then combined using bilinear interpolation in order to eliminate

artificially induced boundaries. The contrast, especially

in homogeneous areas, can be limited in order to avoid amplifying the

noise which might be present in the image.

J = adapthisteq(I) Performs CLAHE on the intensity image I.

J = adapthisteq(I,PARAM1,VAL1,PARAM2,VAL2...) sets various parameters.

Parameter names can be abbreviated, and case does not matter. Each

string parameter is followed by a value as indicated below:

'NumTiles' Two-element vector of positive integers: [M N].

[M N] specifies the number of tile rows and

columns. Both M and N must be at least 2.

The total number of image tiles is equal to M*N.

Default: [8 8].

Roger S. Gaborski


Adaptive histogram equalization

Adaptive Histogram Equalization

Default, 8x8 tiles

Roger S. Gaborski


Adaptive equalization1

Adaptive Equalization

Roger S. Gaborski


Introduction to computer vision

Chapter 3

www.prenhall.com/gonzalezwoodseddins

Roger S. Gaborski


Introduction to computer vision

Chapter 3

www.prenhall.com/gonzalezwoodseddins

Roger S. Gaborski


Create a color image

Create a ‘color image’

First create three color planes of data

>> red = rand(5)

red =

0.0294 0.0193 0.3662 0.7202 0.0302

0.7845 0.3955 0.2206 0.4711 0.2949

0.7529 0.1159 0.6078 0.9778 0.5959

0.1586 0.1674 0.5524 0.9295 0.1066

0.7643 0.6908 0.3261 0.5889 0.1359

>> green = rand(5)

green =

0.2269 0.5605 0.6191 0.0493 0.1666

0.0706 0.4051 0.3297 0.7513 0.6484

0.9421 0.0034 0.8243 0.7023 0.8097

0.8079 0.5757 0.6696 0.9658 0.8976

0.0143 0.3176 0.6564 0.1361 0.0754

>> blue = rand(5)

blue =

0.6518 0.0803 0.8697 0.6260 0.9642

0.5554 0.2037 0.8774 0.5705 0.6043

0.8113 0.8481 0.5199 0.0962 0.8689

0.5952 0.2817 0.6278 0.7716 0.8588

0.5810 0.9290 0.2000 0.1248 0.7606

Roger S. Gaborski


Introduction to computer vision

colorIm(:,:,1) =

0.0294 0.0193 0.3662 0.7202 0.0302

0.7845 0.3955 0.2206 0.4711 0.2949

0.7529 0.1159 0.6078 0.9778 0.5959

0.1586 0.1674 0.5524 0.9295 0.1066

0.7643 0.6908 0.3261 0.5889 0.1359

colorIm(:,:,2) =

0.2269 0.5605 0.6191 0.0493 0.1666

0.0706 0.4051 0.3297 0.7513 0.6484

0.9421 0.0034 0.8243 0.7023 0.8097

0.8079 0.5757 0.6696 0.9658 0.8976

0.0143 0.3176 0.6564 0.1361 0.0754

colorIm(:,:,3) =

0.6518 0.0803 0.8697 0.6260 0.9642

0.5554 0.2037 0.8774 0.5705 0.6043

0.8113 0.8481 0.5199 0.0962 0.8689

0.5952 0.2817 0.6278 0.7716 0.8588

0.5810 0.9290 0.2000 0.1248 0.7606

>> colorIm(:,:,1)=red;

>> colorIm(:,:,2)=green;

>> colorIm(:,:,3)=blue;

>> colorIm

figure

imshow(colorIm, 'InitialMagnification', 'fit')

Roger S. Gaborski


Colorim

colorIm

colorIm(1,1,: )

colorIm(4,4,: )

Roger S. Gaborski


Introduction to computer vision

colorIm(:,:,1) =

0.0294 0.0193 0.3662 0.7202 0.0302

0.7845 0.3955 0.2206 0.4711 0.2949

0.7529 0.1159 0.6078 0.9778 0.5959

0.1586 0.1674 0.5524 0.9295 0.1066

0.7643 0.6908 0.3261 0.5889 0.1359

colorIm(:,:,2) =

0.2269 0.5605 0.6191 0.0493 0.1666

0.0706 0.4051 0.3297 0.7513 0.6484

0.9421 0.0034 0.8243 0.7023 0.8097

0.8079 0.5757 0.6696 0.9658 0.8976

0.0143 0.3176 0.6564 0.1361 0.0754

colorIm(:,:,3) =

0.6518 0.0803 0.8697 0.6260 0.9642

0.5554 0.2037 0.8774 0.5705 0.6043

0.8113 0.8481 0.5199 0.0962 0.8689

0.5952 0.2817 0.6278 0.7716 0.8588

0.5810 0.9290 0.2000 0.1248 0.7606

Roger S. Gaborski


Introduction to computer vision

  • What are two methods to convert from a color image to a gray scale image?

Roger S. Gaborski


Recall

RECALL

  • What are two methods to convert from a color image to a gray scale image?

    • Average red, green and blue pixels

Roger S. Gaborski


Average

Average

  • For example:

>> colorImAverage = ( colorIm(:,:,1) + colorIm(:,:,2) + colorIm(:,:,3) )/3

colorImAverage =

0.3027 0.2200 0.6183 0.4651 0.3870

0.4701 0.3348 0.4759 0.5976 0.5159

0.8354 0.3224 0.6507 0.5921 0.7582

0.5206 0.3416 0.6166 0.8890 0.6210

0.4532 0.6458 0.3942 0.2833 0.3240

>> figure, imshow(colorImAverage, 'InitialMagnification', 'fit')

Roger S. Gaborski


Gray scale version of color image

Gray scale version of color image

.5976

.5921

Roger S. Gaborski


Color and gray scale images1

Color and Gray scale Images

Roger S. Gaborski


Color and gray scale images2

Color and Gray scale Images

Conversion to gray scale results in a loss of information

Roger S. Gaborski


Introduction to computer vision

  • What are two methods to convert from a color image to a gray scale image?

    • Average red, green and blue pixels

    • Matlab’s rgb2gray function

Roger S. Gaborski


Matlab s rgb2gray function

MATLAB’s rgb2gray Function

>> colorIm_rgb2gray = rgb2gray(colorIm)

colorIm_rgb2gray =

0.2163 0.3439 0.5721 0.3156 0.2168

0.3393 0.3792 0.3596 0.6469 0.5377

0.8706 0.1333 0.7249 0.7155 0.7525

0.5895 0.4202 0.6298 0.9328 0.6567

0.3031 0.4989 0.5056 0.2702 0.1716

Roger S. Gaborski


Colorim and rgb2gray colorim

colorIm and rgb2gray(colorIm)

Roger S. Gaborski


How does rgb2gray work

How does rgb2gray work?

rgb2gray converts RGB values to grayscale values by forming a weighted sum of the R, G, and B components:

Gray = 0.2989 * R + 0.5870 * G + 0.1140 * B

Roger S. Gaborski


Color and gray scale images3

Color and Gray Scale Images

Roger S. Gaborski


  • Login