igneous rocks
Download
Skip this Video
Download Presentation
Igneous Rocks

Loading in 2 Seconds...

play fullscreen
1 / 29

Igneous Rocks - PowerPoint PPT Presentation


  • 142 Views
  • Uploaded on

Igneous Rocks. Classification of Igneous Rocks. Most Abundant Elements: O, Si, Al, Fe, Ca, Mg, K, Na Calculate Elements as Oxides (Account for O) How Much SiO 2 ? (Account for Si) What Feldspars are Present? (Account for Al, Ca, Na, K) What Else is Present? (Account for Mg, Fe).

loader
I am the owner, or an agent authorized to act on behalf of the owner, of the copyrighted work described.
capcha
Download Presentation

PowerPoint Slideshow about 'Igneous Rocks' - alton


An Image/Link below is provided (as is) to download presentation

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.


- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -
Presentation Transcript
classification of igneous rocks
Classification of Igneous Rocks
  • Most Abundant Elements: O, Si, Al, Fe, Ca, Mg, K, Na
  • Calculate Elements as Oxides (Account for O)
  • How Much SiO2? (Account for Si)
  • What Feldspars are Present? (Account for Al, Ca, Na, K)
  • What Else is Present? (Account for Mg, Fe)
silica content
Silica Content
  • Oversaturated: Excess of Silica
    • Quartz Present
  • Saturated: Just enough silica to combine with other ions
  • Undersaturated: Silica-deficient Minerals Present
    • Olivine, Nepheline, Corundum, etc.
    • Can’t coexist with quartz
feldspars
Feldspars
  • Plagioclase vs. K-Spar (Ca and Na vs. K)
  • Relative Aluminum Content
    • Peraluminous: Al left over after Feldspars form
      • Sillimanite, garnet, corundum may be present
    • Peralkaline: Al insufficient to form Feldspars
      • Riebeckite, Aegerine, may be present
other ingredients
Other Ingredients
  • Ferromagnesian minerals heavily influenced by characteristics like water
    • The only difference between rocks with biotite, amphibole or pyroxene may be water content
  • Basis for classification of ultramafic rocks.
mainstream igneous rocks
“Mainstream” Igneous Rocks
  • Ultramafic <40% SiO2
    • Plutonic: Dunite Volcanic: Komatiite
  • Mafic 40-50% SiO2
    • Plutonic: Gabbro Volcanic: Basalt
  • Intermediate 50-60% SiO2
    • Plutonic: Diorite Volcanic: Andesite
  • Felsic >60% SiO2
    • Plutonic: Granite Volcanic: Rhyolite
the feldspars
The Feldspars
  • Potassium Feldspars
    • T dependent
    • Microcline, Orthoclase, Sanidine
  • Plagioclase
    • Classic Example of Solid Solution
    • Ca vs. Na content
  • Perthite: exsolution texture
  • Anorthoclase: K, Ca, Na mixture
potassium feldspars
Potassium Feldspars
  • Microcline
    • Lowest Temperature variety
    • Plutonic rocks
    • Almost always perthitic
  • Orthoclase
    • Medium Temperatures
    • Volcanic and Plutonic Rocks
  • Sanidine
    • Highest Temperature
    • Volcanic Rocks
    • May Have Appreciable Na
  • More a function of cooling rate and pressure than temperature?
plagioclase feldspars
Plagioclase Feldspars
  • Albite (0-10% Ca): Where Na goes in metamorphic rocks, metasomatism
  • Oligoclase (10-30% Ca): Granitic rocks
  • Andesine (30-50% Ca): Intermediate rocks
  • Labradorite (50-70% Ca): Mafic rocks
  • Bytownite (70-90% Ca): Rare - too sodic for marble, too calcic for magmas
  • Anorthite (90-100% Ca): Impure metamorphosed limestones
perthite and anorthoclase
Perthite and Anorthoclase
  • Ionic Radii (nm)
    • K: 0.133
    • Ca 0.099
    • Na 0.097
  • Ca and Na substitute freely
  • K can fit in lattice at high T
  • Na can fit in K-spar lattice but not Ca
  • Perthite: K-spar and plagioclase separate during cooling (Exsolution)
  • Anorthoclase: Na-K mix, 10-40% K-spar
foids feldspathoids
Foids (Feldspathoids)
  • Fill the “ecological niche” of feldspars when insufficient silica is available
  • Major Minerals:
    • Nepheline (Na,K)AlSiO4
    • Leucite KAlSi2O6
volcanic and plutonic equivalents
Granite

Granodiorite

Tonalite

Syenite

Monzonite

Diorite

Gabbro

Foid Syenite

Foid Monzonite

Foid Gabbro

Rhyolite

Dacite

Dacite

Trachyte

Latite

Andesite

Basalt

Phonolite

Tephrite

Basanite

Volcanic and Plutonic Equivalents
olivine
Olivine
  • Like Plagioclase, a solid solution
    • Forsterite (Mg2SiO4) and Fayalite (Fe2SiO4)
  • Becomes More Fe-Rich as Magma Cools
  • Forsterite
    • Can be nearly pure in metamorphic rocks
    • Cannot coexist with quartz
  • Fayalite
    • Rarely found pure
    • Can coexist with quartz
ortho and clinopyroxene
Ortho- and Clinopyroxene
  • Orthopyroxene
    • Orthorhombic
    • Mixture of Enstatite (Mg2Si2O6) and Ferrosilite (Fe2Si2O6). The generic mixture is termed Hypersthene ((Mg,Fe)2Si2O6)
  • Clinopyroxene
    • Monoclinic
    • Mixture of Diopside (CaMgSi2O6) and Hedenbergite (CaFeSi2O6) The generic mixture is termed Augite ((Ca,Mg,Fe)2Si2O6)
mode and norm
Mode and Norm
  • Mode: What is actually present
  • Norm: Ideal mineral composition
    • Ignores water
    • Assumes minor components used predictably
    • Assumes major minerals form in predictable sequence
    • Purpose is to visualize rock from chemical data
cipw norm
CIPW Norm
  • Cross, Iddings, Pirrson and Washington
  • All Cations treated as oxides
  • Anions (S, F, Cl) treated as elements
  • Convert wt% to molecular proportions (Wt%/Mol Wt)
  • Allocate oxides to mineral phases
allocate minor elements
Allocate minor elements
  • Ba, Sr  Ca; MnO  FeO
  • CO2  Calcite (with CaO)
  • P2O5  Apatite (with CaO)
  • S  Pyrite (with FeO)
  • TiO2  Ilmenite (with FeO)
  • F  Fluorite (with CaO)
  • Cr2O3  Chromite (with FeO)
  • Cl  Halite (With Na2O)
start forming silicates
Start Forming Silicates
  • ZrO2  Zircon (with SiO2)
  • Form provisional Feldspars
    • Na2O  Albite
    • K2O  K-Spar
    • CaO  Anorthite
    • With SiO2 and Al2O3
    • May need to convert to foids if SiO2 runs out
allocate feo mgo and cao
Allocate FeO, MgO and CaO
  • Fe2O3  Acmite (With Na2O and SiO2) and Magnetite (With FeO)
  • FeO and MgO  Hypersthene (provisional)
  • CaO + Hy  Diopside
  • Excess SiO2  Quartz
if silica runs out
If Silica Runs Out
  • Hypersthene  Olivine
  • Albite  Nepheline
  • K-Spar  Leucite
example
Example
  • SiO2 83
  • TiO2 2
  • Al2O3 16
  • Fe2O3 2
  • FeO 10
  • MgO 17
  • CaO 17
  • Na2O 5
  • K2O 1
let the games begin
Let the Games Begin
  • Ilmenite: TiO2 0; FeO  10 - 2 = 8
  • K-Spar: K2O  0; Al2O3 16 – 1 = 15; SiO2  83 – 6K2O = 77
  • Albite: Na2O  0; Al2O3 15 – 5 = 10; SiO2  77 – 6Na2O = 47
  • Anorthite: CaO  0; Al2O3 10 – 17 = -7!
    • Excess CaO
    • CaO  17-10 = 7; Al2O3  0; SiO2  47 – 2CaO = 27
final allocations
Final Allocations
  • Magnetite: Fe2O3 0; FeO  10-2 = 8
  • FeO + MgO = 8 + 17 = 25
  • Diopside: CaO  0; FeO + MgO = 25 – 7 = 18; SiO2  SiO2 – 2CaO = 27-14 = 13
  • Hypersthene: FeO + MgO  0; SiO2  13 – 18 = -5 (Call this -D)
  • Olivine: Ol = D = 5
  • Hypersthene: Hy – 2D = 18 – 10 = 8
final result
Final Result
  • Ilmenite: 2
  • K-Spar: 1
  • Albite: 5
  • Anorthite: 10
  • These are molecular proportions
  • Magnetite: 2
  • Diopside: 7
  • Olivine: 5
  • Hypersthene: 8
  • Multiply by Mol. Wt. and normalize for Wt%
ad