BX663 (2.4)
This presentation is the property of its rightful owner.
Sponsored Links
1 / 21

+160 PowerPoint PPT Presentation


  • 79 Views
  • Uploaded on
  • Presentation posted in: General

BX663 (2.4). rotation- dominated. BX 610 (2.2). -120. BX 404 (2.03). +160. K20-5 (2.2). MD 41 (2.2). -170. 30. -170. -5. 170. BzK 15504 (2.4). ZC782941 (2.2). SA12 8768 (2.2). SA12 6339 (2.3). -200. +160. D3a 6397 (1.51). 170. -50. 140. 30. K20-8 (2.2). BzK 6004 (2.4).

Download Presentation

+160

An Image/Link below is provided (as is) to download presentation

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.


- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -

Presentation Transcript


160

BX663 (2.4)

rotation-

dominated

BX 610 (2.2)

-120

BX 404 (2.03)

+160

K20-5 (2.2)

MD 41 (2.2)

-170

30

-170

-5

170

BzK 15504 (2.4)

ZC782941 (2.2)

SA12 8768 (2.2)

SA12 6339 (2.3)

-200

+160

D3a 6397 (1.51)

170

-50

140

30

K20-8 (2.2)

BzK 6004 (2.4)

-140

-160

-260

- 90

K20-6 (2.2)

80

ZC1101592 (1.41)

200

240

GK 167 (2.58)

-100

SA12 6192 (1.51)

BX 405 (2.03)

BX 502 (2.16)

150

70

+210

40

-45

200

-60

35

BX482 (2.2)

-60

+ 130

-70

-240

GK2471 (2.43)

BzK 4165 (1.7)

80

120

-35

170

-20

BX389 (2.2)

-170

-170

30

1” (8 kpc)

-120

D3a 4751 (2.27)

-30

50

70

merger-like

BM 1163 (1.41)

30

BX 599 (2.33)

K20-9 (2.0)

-70

100

-160

increasing dispersion

-30

BX528 (2.3)

GK2252 (2.41)

+240

K20-7 (2.2)

-80

280

+ 160

GK 2113 (1.61)

-80

70

-70

-70

+380

+ 110

-280

SINS

70 Galaxies 1.5-2.5

Disk: 30-40% (v/σ ~ 2 – 4)

Disp: 30% (v/σ < 1)

Merger: 20-30%

Forster Schreiber et al. 09

Shapiro et al. 09

SINS

Förster, Bouché,Cresci,

Genzel, Shapiro et al. 06-08


Sins rotators

SINS “rotators”

Cresci et al. 09


Sins rotators1

SINS “rotators”

Cresci et al. 09


Sins rotators2

SINS “rotators”

Cresci et al. 09


Tude des galaxies faible masse

Étude des galaxies à faible masse

MUSE Workshop March 18/19

N. Bouché (MPE  LATT)


The hubble sequence still unexplained

The Hubble sequence still unexplained

 Need to study progenitors!


Why study low mass galaxies

Why study low-mass galaxies?

VVDS

SINS

LBG

Ocvirk, Teyssier 08


Where are the baryons

Where are the baryons?

M halo

S. White & co (SDSS)


New insights in galaxy formation

Z=2 GOODS sBzK K<22.5 Daddi + Elbaz 07

Z=0 SDSS

New insights in galaxy formation

see H. Flores, M. Puech, L. Tresse

  • Scaling relations (SFR-Mass, TF, etc..)

Puech 08, Cresci 09

Mergers not dominant


Questions

Questions

  • Why SFR ~ 200 M/yr at z=2?

  • Origin of scaling relations: TF, SFR-Mass?

  • Role of feedback in low-mass end (z=2)?

  • What happens at z>5 ?


160

high-sigma halos: fed by relatively thin, dense filaments → cold flows

typical halos: reside in relatively thick filaments, fed ~spherically → no cold flows

the millenium cosmological simulation


160

Insights from Millennium Simulation

dM/dt ~ 35 Mh1.0 (1+z)2.2

SFR =ε 0.18 dMh/dt

ε must be ~1

EPS

DM accretion rate

SINS

M halo

Genel et al. 08


Dark baryon accretion

Prediction: >>50% baryons accreted as cold gas! (but clumpy)

Dark + baryon accretion


New insights in galaxy formation1

Z=2 GOODS sBzK K<22.5 Daddi + Elbaz 07

EPS

Z=0 SDSS

New insights in galaxy formation

see H. Flores, M. Puech, L. Tresse

  • Scaling relations (SFR-Mass, TF, etc..)


F baryon at z 0

f_baryon at z=0

Toy model prediction

Strongly tied to only assumption

Observation at z=0


Gas fractions

@z=2.2: 50%

@z=1 : 30%

@z=0 : 10%

30-50%Tacconi/Daddi

30%Tacconi

10% Ω(HI)/Ω(star)

Gas fractions

Observations

Accretion prediction


Questions1

Questions

  • Why SFR ~ 200 M/yr at z=2?

  • Origin of scaling relations: TF, SFR-Mass?

  • Role of feedback in low-mass end (z=2)?

  • What happens at z>5 ?


Galaxy formation with muse

Galaxy formation with MUSE

 Need Resolved spectroscopy ( Mdyn, Mh, SFR, O/H, etc..) of low-mass galaxies

  • Feedback processes (IGM, MZ relation)

    (z~0.7 – 1.0)

  • High redshift Lyman alpha emitters

  • Cold accretion


Galaxy formation with muse1

Galaxy formation with MUSE

 Need Resolved spectroscopy ( Mdyn, Mh, SFR, O/H, etc..) of low-mass galaxies

  • Feedback processes (IGM, MZ relation)

    (z~0.7 – 1.0)

  • High redshift Lyman alpha emitters

  • Cold accretion


Galaxy formation with muse2

Galaxy formation with MUSE

 Need Resolved spectroscopy ( Mdyn, Mh, SFR, O/H, etc..) of low-mass galaxies

  • Feedback processes (IGM, MZ relation)

    (z~0.7 – 1.0)

  • High redshift Lyman alpha emitters

  • Cold accretion (z~3)

1’


160

How?

  • Study low-mass galaxies at z~1 [OII]

  • Study filaments at z~3 [Lya]

  • LAE at z~4,5

  • LAE at z>6

SF

Verhamme

UDF

Need KMOS (OII)

MDF

Need KMOS / Hawk-I etc

MDF

Measure ε_SFR (M halo)


  • Login