1 / 2

BETd-246

BETd-246 is a potent, second-generation BET protein degrader that exhibits superior selectivity, potency and antitumor activity; completely and selectively depletes BRD2, BRD3 and BRD4 in representative TNBC cell lines with 30-100 nM for 1 h or with 10-30 nM for 3 h incubation; displays strong growth inhibition and apoptosis induction activity in TNBC cell lines with IC50 <1 uM, induces a rapid and time-dependent downregulation of MCL1 protein; decreases BET proteins in xenograft breast tumors and suppress tumor growth in vivo without causing weight loss.

Hugh3
Download Presentation

BETd-246

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. BETd-246 - CAS 2140289-17-2 BOC Sciences has a highly experienced and multidisciplinary team fully committed to making your project a success, aiming to meet any requirements with our Protac® technique. BETd-246 is a potent, second-generation BET protein degrader that exhibits superior selectivity, potency and antitumor activity; completely and selectively depletes BRD2, BRD3 and BRD4 in representative TNBC cell lines with 30-100 nM for 1 h or with 10-30 nM for 3 h incubation; displays strong growth inhibition and apoptosis induction activity in TNBC cell lines with IC50 <1 uM, induces a rapid and time-dependent downregulation of MCL1 protein; decreases BET proteins in xenograft breast tumors and suppress tumor growth in vivo without causing weight loss. Reference Reading  Breast cancer is a collection of distinct tumor subtypes that are driven by unique gene expression profiles. These transcriptomes are controlled by various epigenetic marks that dictate which genes are expressed and suppressed. During carcinogenesis, extensive restructuring of the epigenome occurs, including aberrant acetylation, alteration of methylation patterns, and accumulation of epigenetic readers at oncogenes. As epigenetic alterations are reversible, epigenome-modulating drugs could provide a mechanism to silence numerous oncogenes simultaneously. Here, we review the impact of inhibitors of the Bromodomain and Extraterminal (BET) family of epigenetic readers in breast cancer. These agents, including the prototypical BET inhibitor JQ1, have been shown to suppress a variety of oncogenic pathways while inducing minimal, if any, toxicity in models of several subtypes of breast cancer. BET inhibitors also synergize with multiple approved anti-cancer drugs, providing a greater response in breast cancer cell lines and mouse models than either single agent. The combined findings of the studies discussed here provide an excellent rationale for the continued investigation of the utility of BET inhibitors in breast cancer. Triple-negative breast cancers (TNBC) remain clinically challenging with a lack of options for targeted therapy. In this study, we report the development of a second-generation BET protein degrader, BETd-246, which exhibits superior selectivity, potency, and antitumor activity. In human TNBC cells, BETd-246 induced degradation of BET proteins at low nanomolar concentrations within 1 hour of exposure, resulting in robust growth inhibition and apoptosis. BETd-246 was more potent and effective in TNBC cells than its parental BET inhibitor compound BETi-211. RNA-seq analysis revealed predominant downregulation of a large number of genes involved in proliferation and apoptosis in cells treated with BETd-246, as compared with BETi-211 treatment that upregulated and downregulated a similar number of genes. Functional investigations identified the MCL1 gene as a critical downstream effector for BET degraders, which synergized with small-molecule inhibitors of BCL-xL in triggering apoptosis. In multiple murine xenograft

  2. models of human breast cancer, BETd-246 and a further optimized analogue BETd-260 effectively depleted BET proteins in tumors and exhibited strong antitumor activities at well-tolerated dosing schedules. Overall, our findings show that targeting BET proteins for degradation represents an effective therapeutic strategy for TNBC treatment. Cancer Res; 77(9); 2476-87. ©2017 AACR. Studies on the efficacy of small molecule inhibitors in Merkel cell carcinoma (MCC) have been limited and largely inconclusive. In this study, we investigated the therapeutic potential of a potent BET degrader, BETd-246, in the treatment of MCC. We found that MCC cell lines were significantly more sensitive to BETd-246 than to BET inhibitor treatment. Therapeutic targeting of BET proteins resulted in a loss of "MCC signature" genes but not MYC expression as previously described irrespective of Merkel cell polyomavirus (MCPyV) status. In MCPyV+ MCC cells, BETd-246 alone suppressed downstream targets in the MCPyV-LT Ag axis. We also found enrichment of HOX and cell cycle genes in MCPyV- MCC cell lines that were intrinsically resistant to BETd-246. Our findings uncover a requirement for BET proteins in maintaining MCC lineage identity and point to the potential utility of BET degraders for treating MCC.

More Related