1 / 22

Crystals and Crystal Growing

Crystals and Crystal Growing. Why Single Crystals. What is a single crystal? Single crystals cost a lot of money. When and why is the cost justified? Current semiconductor devices on an IC have characteristic dimensions of ¼ micron. What happens if grain size is on the scale of microns?

zulema
Download Presentation

Crystals and Crystal Growing

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Crystals and Crystal Growing

  2. Why Single Crystals • What is a single crystal? • Single crystals cost a lot of money. • When and why is the cost justified? • Current semiconductor devices on an IC have characteristic dimensions of ¼ micron. • What happens if grain size is on the scale of microns? • What makes optical materials look translucent? • What happens when a “weapons grade laser beam” hits an inhomogeneity in an optical component?

  3. Applications of Single Crystals For what applications are single crystals necessary? 1. Semiconductor optoelectronics (substrate materials) Transistors, diodes, integrated circuits: Si, Ge, GaAs, InP LEDs and lasers: GaAs, GaInAs, GaInP, GaAsP, GaP:N, ruby Solar cells: Si, GaAs, GaInP/GaAs tandems Microwave sources: GaAs 2. Non-glass optics (see previous lecture for transmission ranges): alkali halides, alkaline earth halides, thallium halides, Ge, sapphire 3. Electromechanical transducers Ultrasonic generators, sonar: ADP, KDP Strain gauges: Si Optical modulators: LiNbO3, BaTiO3, BaNaNiO3 Piezoelectric microphone sources: quartz 4. Radiation detectors: HgI2, NaI:Tl, CsI:Tl, LiI:Eu, Si, Ge, III-V, II-VI, PbS

  4. 5. Micromechanical devices: Si Utah Neural Array (SEM image) 6. Research: everything. Why? 7. Artificial gems: sapphire, ruby, TiO2, ZrO2 • Why are they necessary for those applications? (Numbers correspond) 1. Electrical homogeneity on the length scale of the device; minimum carrier scattering 2. Optical homogeneity on the length scale of the light being transmitted; minimum light scattering 3. Mechanical strength and homogeneity; availability of processing technology: nickel-based super alloy turbine blades 4. Purity; well-defined material In all cases: optical, electronic or mechanical properties superior to non-single crystal competition.

  5. Superconducting Ceramic Single Crystals Aps.org

  6. Bulk Crystal Growth Techniques

  7. Digression on Segregation and Purification • Electronic materials are only interesting when doped • Carrier type: “n” • Dopant: “P” • “Res”: “1-20 ohms”

  8. Typical Numbers • On previous label, ρ = 1-20 Ohm (presumably 1-20 Ω-cm) • As you know: σ = 1/ρ = neμ • For silicon at 10 Ω-cm with μn = 1700 cm2/V-sec • nP = 3.7x1014/cm3 • nSi = 2.33 gm/cm3)x(6.02x1023 atoms/mole) ÷(28.068 gm/mole) = 4.997x1022 atoms per mole • nP/nSi = 7x10-9 = 7 ppb! • Background impurity level must be small on this scale!

  9. Segregation • Coefficient can be greater or less than unity • Nutrient volume is finite • Causes major problems with dopant uniformity • Can be resolved by adding dopant to melts during growth • Only works for K>1!

  10. Origin of Segregation: Binary Phase Diagram W. G. Pfann, Zone Melting

  11. Using Segregation for Purification:“Normal Freezing” n.b.: exactly the same process is used to grow large single crystals “from the melt”! W. G. Pfann, Zone Melting

  12. Impurity Distribution after Normal Freezing W. G. Pfann, Zone Melting

  13. Concept of Zone Refining W. G. Pfann, Zone Melting Molten zone of length l is passed through ingot of length L Also the process used to make “float zone silicon”

  14. Impurity Distribution after Single Pass of Zone (Less efficient than normal freezing) W. G. Pfann, Zone Melting

  15. Impurity Distribution from Multi-pass Zone Refiningn.b.: k = 0.9524, l/L = 0.01 W. G. Pfann, Zone Melting

  16. Take Away Lessons • Segregation of impurities/dopants is a fact that you must deal with as an aspect of materials preparation • Segregation can be used as part of an elegant purification process • Zone refining can be very effective for materials purification

  17. Current Purification of Silicon(Wikipedia) • Siemens process:high-purity silicon rods are exposed to trichlorosilane at 1150 °C. The trichlorosilane gas decomposes and deposits additional silicon onto the rods, enlarging them: • 2 HSiCl3 → Si + 2 HCl + SiCl4 • Silicon produced from this and similar processes is called polycrystalline silicon. Polycrystalline silicon typically has impurity levels of less than 10−9.

  18. CzochralskiGrowth Synthesis may or may not be part of growth GaAs may be pre-synthesized or a pre- measured quantity As may be bubbled through Ga metal Li H synthesized from Li and H2 (or D2) Typical sizes: Si - 12" φ, 200 kg charge; GaAs- 4" φ We have grown from a 2 g melt of isotopically pure K13C15N Typical growth rates: cm/hr www.people.seas.harvard.edu

  19. Vertical Bridgman Technique Melting point isotherm is directionally translated through an ingot from a spatially confined region. Typically unseeded  no seed necessary Can be seeded: quality as high as Czochralski High yield: all starting material is recovered as single crystal Diameters to 22 inches; 40 cm2 square KDP Used extensively for alkali halide scintillators, transducers and windows

More Related