kuliah ke 2 n.
Download
Skip this Video
Loading SlideShow in 5 Seconds..
Kuliah Ke-2 PowerPoint Presentation
Download Presentation
Kuliah Ke-2

Loading in 2 Seconds...

  share
play fullscreen
1 / 27
zlata

Kuliah Ke-2 - PowerPoint PPT Presentation

120 Views
Download Presentation
Kuliah Ke-2
An Image/Link below is provided (as is) to download presentation

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.

- - - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - - -
Presentation Transcript

  1. Kuliah Ke-2 Matriks Jarang dan Pengalamatan Matriks (Bab 2) Informatics Engineering Department TRUNOJOYO UNIVERSITY

  2. PENGALAMATAN Array / Larik LOK(LA[K]) = Awal(LA) + W(K - LB) Contoh:Misalkan Awal (Jual) = 100 dan W= 4, maka LOK (JUAL[1990]) = 100 LOK (JUAL[1991]) = 104 LOK (JUAL[1992]) = 108 Berapa lokasi JUAL[2000] ? untuk mendapat lokasi tersebut LOK(LA[K]) = Awal(LA) + W(K - LB) = 100 + 4 * (2000 – 1990) = 140 Review

  3. PENGALAMATAN Array / Larik Review

  4. Struktur Data : Matriks Definisi • struktur data yang mengacu pada sekumpulan elemen yang diakses melalui indeks • Array dua dimensi, yang memiliki indeks baris dan kolom Review

  5. Proses Matriks • Elemen Matriks diproses Baris demi Baris • Elemen Matriks diproses Baris demi Baris Review

  6. PROSES MATRIKS Matriks Review 18 3 69 24 8 70

  7. PROSES MATRIKS Matriks Review 18 3 69 24 8 70

  8. INISIALISASI Matriks For Baris = 1 to 2 do For Kolom = 1 to 3 do A(Baris, Kolom) = 0 Endfor Endfor Review 0 0 0 0 0 0

  9. Isi dengan 1,2,3,4,5,6 Matriks Indeks = 1 For Baris = 1 to 2 do For Kolom = 1 to 3 do A(Baris, Kolom) = Indeks Indeks = Indeks + 1 Endfor Endfor Review 1 2 3 4 5 6

  10. Isi dengan 1,3,5,7,9,11 Matriks Indeks = ??? For Baris = 1 to 2 do For Kolom = 1 to 3 do A(Baris, Kolom) = ??? Indeks = ??? Endfor Endfor Review 1 3 5 7 9 13

  11. Menjumlahkan setiap baris Matriks For Baris = 1 to 2 do TotalBaris = 0 For Kolom = 1 to 3 do TotalBaris = TotalBaris + A[Baris,Kolom] Endfor Print Total Baris Endfor Review 18 3 69 90 24 8 70 102

  12. 18 1 3 2 69 3 24 4 5 8 70 6 Menjumlahkan C = A + B Dua buah Matriks For Baris = 1 to 2 do For Kolom = 1 to 3 do C[Baris,Kolom] =A[Baris,Kolom]+ B[Baris,Kolom] Endfor Endfor Review +

  13. 18 3 69 24 8 70 Mengalikan Matriks For Baris = 1 to 2 do For Kolom = 1 to 3 do C[Baris, Kolom] = 0 For K = 1 to P do C[Baris,Kolom] =C[Baris,Kolom]+ A[Baris,K] + B[K,Kolom] Endfor Endfor Endfor

  14. Kita lanjutkan untuk yang satu ini …..

  15. Matriks Jarang Sparse Matrix matriks yang elemennya banyak bernilai o (nol). Idenya : bgm mengkonversinya supaya lebih hemat memori

  16. Contoh Matriks Jarang Sparse Matrix Matriks Segitiga Matriks Tridiagonal

  17. Konversi Matriks Jarang Sparse Matrix 9 data menjadi 6 data

  18. Konversi Matriks Jarang Sparse Matrix 16 data menjadi 10 data

  19. Ubah Matriks Segitiga jadi Array Sparse Matrix

  20. Lokasi Elemen Matriks Segitiga Sparse Matrix Lokasi pada array : L = Baris ( Baris – 1 ) ________________ + Kolom 2

  21. Pengalamatan Matriks Ordering A[1,1], A[1,2], A[1,3], A[2,1], A[2,2],A[2,3]…... jika row major A[1,1], A[2,1], A[1,2], A[2,2], A[1,3],A[2,3]….. jika column major 18 3 69 90 24 8 70 102

  22. Pengalamatan Matriks Row Ordering A[1,1], A[1,2], A[1,3], A[2,1], A[2,2],A[2,3]…... jika row major A[1,1], A[2,1], A[1,2], A[2,2], A[2,2],A[2,3]….. jika column major

  23. Pengalamatan Matriks Column Ordering A[1,1], A[1,2], A[1,3], A[2,1], A[2,2],A[2,3]…... jika row major A[1,1], A[2,1], A[1,2], A[2,2], A[2,2],A[2,3]….. jika column major

  24. Cari Alamat Elemen Matriks Row Ordering Loncat 2

  25. Pengalamatan Matriks Ordering Mencari lokasi memori pada Row-major order Lokasi (A[B,K] = Base(A) + w [ N ( B-1) + (K-1) ] Mencari lokasi memori pada Column-major order Lokasi (A[B,K] = Base(A) + w [ M ( B-1) + (K-1) ] Base (a) : lokasi awal di memori (alamat A[1,1]) W : jumlah word/byte utk menyimpan 1 elemen M : jumlah baris pada matriks A N : jumlah kolom pada matriks A

  26. Cari Alamat Elemen Matriks Column Ordering

  27. Cari Alamat Elemen Matriks