microalgae biodiesel as a substitute for jet fuel l.
Download
Skip this Video
Loading SlideShow in 5 Seconds..
MICROALGAE BIODIESEL AS A SUBSTITUTE FOR JET FUEL PowerPoint Presentation
Download Presentation
MICROALGAE BIODIESEL AS A SUBSTITUTE FOR JET FUEL

Loading in 2 Seconds...

play fullscreen
1 / 43

MICROALGAE BIODIESEL AS A SUBSTITUTE FOR JET FUEL - PowerPoint PPT Presentation


  • 152 Views
  • Uploaded on

MICROALGAE BIODIESEL AS A SUBSTITUTE FOR JET FUEL. BY CHANDAN SOHI 4/28/2010. KEY ISSUES. DEPENDENCE ON FOREIGN OIL REPLACEMENT FUEL FOR GROUND TRANSPORTATION REPLACEMENT FUEL FOR AVIATION. WHY?. DEPLETING PETROLEUM RESOURCES INCREASING COMPETITION FOR THESE LIMITED RESOURCES.

loader
I am the owner, or an agent authorized to act on behalf of the owner, of the copyrighted work described.
capcha
Download Presentation

PowerPoint Slideshow about 'MICROALGAE BIODIESEL AS A SUBSTITUTE FOR JET FUEL' - zeroun


An Image/Link below is provided (as is) to download presentation

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.


- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -
Presentation Transcript
key issues
KEY ISSUES
  • DEPENDENCE ON FOREIGN OIL
  • REPLACEMENT FUEL FOR GROUND TRANSPORTATION
  • REPLACEMENT FUEL FOR AVIATION
slide3
WHY?
  • DEPLETING PETROLEUM RESOURCES
  • INCREASING COMPETITION FOR THESE LIMITED RESOURCES
annual energy consumption trends
Annual Energy Consumption Trends

Annual energy consumption values for selected countries [3]

the requirements ffor any new alternative fuel
THE REQUIREMENTS FFOR ANY NEW ALTERNATIVE FUEL
  • HOME GROWN
    • PRODUCED WITHIN THE US
    • PROVIDE POLITICAL AUTONOMY
    • 1973 OIL CRISIS /YOM KIPPUR WAR
  • ECONOMICALLY FEASIBLE
    • COMPETITIVE WITH PETROLEUM BASED FUELS
  • ENVIRONMENTALLY FRIENDLY
    • LOWER EMISSIONS
    • REDUCED CO2 LIFE CYCLE EMISSIONS
    • ONE OF THE LEADING SOURCES FOR GLOBAL WARMING
options
OPTIONS
  • CRYOGENIC FUELS
    • LONG TERM
    • LIQUID HYDROGEN
    • LIQUID METHANE
    • TECHNOLOGICAL ISSUES
options7
OPTIONS
  • SYNTHETIC FUELS
    • JET A
    • SYNTHETIC PARRAFINIC KEROSENE
    • HIGH LEVELS OF CO2 EMISSIONS DURING PRODUCTION
biofuel
BIOFUEL
  • FUELS FORMED FROM BIOMASS
  • BIOMASS
    • PHOTOSYNTHESIS
      • WATER AND CO2
      • ENERGY FROM THE SUN
    • NO NET CO2 CHANGE
prevalent pathways
PREVALENT PATHWAYS

http://www.pewclimate.org/docUploads/images/Fig2-BiofuelsPathways.preview.GIF

aviation fuel
AVIATION FUEL
  • BIOFUELS FOR GROUND TRANSPORTATION AVAILABLE IN THE MARKETPLACE
    • ETHANOL
    • BIODIESEL
  • NO SUITABLE ALTERNATIVES FOR JET FUEL
    • INVESTIGATE BIODIESEL AS AN ALTERNATIVE
key issues with biodiesel as a replacement for jet fuel
KEY ISSUES WITH BIODIESEL AS A REPLACEMENT FOR JET FUEL
  • PRODUCTION
    • FOOD VS FUEL
    • TECHNOLOGICAL SHORT COMINGS
  • LOW TEMPERATURE PROPERTY ISSUES
    • HIGH ALTITUDE CRUISING
    • PROPENSITY TO FREEZE
  • OXIDATIVE DEGRADATION
    • BREAKING DOWN AEROBICALLY DUE TO OXIDATION
food vs fuel
FOOD VS FUEL
  • TYPICAL FEEDSTOCKS
    • CORN
    • SOYBEAN
    • REQUIRE LARGE AMOUNTS OF ARABLE LAND
    • WATER
  • MICROALGAE
    • NOT MUCH LAND NEEDED
    • NON-ARABLE LAND
    • BRACKISH WATER
pathways
PATHWAYS

http://www.pewclimate.org/docUploads/images/Fig2-BiofuelsPathways.preview.GIF

pathways for production of microalgal biodiesel

Fuel Requirements

Strain Selection

Production System

Heterotrophic

Photoautotrophic

Open Pond

Closed Photobioreactor

Hybrid

Mixotrophic

Harvesting

Conversion Technologies

Thermochemical

Biochemical

Gasification

Anaerobic Digestion

Thermochemical Liquefaction

Alcoholic Fermentation

Pyrolysis

Photobiological Hydrogen Production

Direct Combustion

Fuels

Syngas

Charcoal

Electricity

Bio-Oil

Transesterification

Biodiesel

Methane

Hydrogen

Ethanol

PATHWAYS FOR PRODUCTION OF MICROALGAL BIODIESEL
key issues or decisions for production of microalgae biodiesel
KEY ISSUES OR DECISIONS FOR PRODUCTION OF MICROALGAE BIODIESEL
  • STRAIN SELECTION
  • PRODUCTION TECHNOLOGY
  • CONVERSION TECHNOLOGY
  • TRANSESTERIFICATION
strain selection
STRAIN SELECTION
  • DEPENDED ON
    • OIL CONTENT
    • GROWTH RATE
    • FUEL PROPERTIES

[12] Deng

production technologies
PRODUCTION TECHNOLOGIES
  • USED TO GROW AND CULTIVATE MICRIALGAE
  • ISSUES INCLUDE CONTAMINATION AND COST
  • THREE TYPES
    • Photoautotrophic
    • Heterotrophic
    • Mixotrophic
photoautotrophic
PHOTOAUTOTROPHIC
  • ONLY PRODUCTION SYSTEM THAT IS CURRENTY ECONOMICALLY AND TECHNICALLY FEASIBLE FOR LARGE SCALE PRODUCTION
  • THREE TYPES
    • OPEN POND PRODUCTION SYSTEM
    • CLOSE PHOTOBIOREACTOR SYSTEM
    • HYBRID PRODUCTION SYSTEM
photoautotrophic20
PHOTOAUTOTROPHIC
  • OPEN POND PRODUCTION SYSTEM
    • GROWING ALGAE IN MAN-MADE PONDS
    • CHEAPER THAN OTHER MODELS
    • TENDS TO LOOSE WATER THROUGH EVAPORATION
    • EASY TO POLLUTE BY UNWANTED SPECIES
    • HARD TO CONTROL CULTURE ENVIRONMENT (LIGHT & TEMPERATURE)
photoautotrophic21
PHOTOAUTOTROPHIC
  • CLOSED PHOTOBIOREACTOR SYSTEM
    • USED TO OVERCOME THE MAJOR PROBLEMS ASSOCIATED WITH OPEN POND SYSTEMS
    • THREE TYPES
      • TUBULAR REACTORS
      • PLATE REACTORS
      • BUBBLE COLUMN REACTORS
    • MOST COMMON IS TUBULAR
      • ALLIGNED IN AN ARRAY OF GLASS OR PLASTIC TUBES
    • EXPENSIVE
      • EXTENSIVE CAPITAL REQUIRED
    • DESIGN LIMITATIONS – TUBE LENGTH
      • SEVERAL KM OF TUBE REQUIRED TO PRODUCE SIGNIFICANT AMOUNTS OF FUEL
tubular reactors
TUBULAR REACTORS

http://brae.calpoly.edu/CEAE/images/biofuels3.gif

photoautotrophic23
PHOTOAUTOTROPHIC
  • HYBRID PRODUCTION SYSTEM
    • A COMBINATION OF OPEN POND AND CLOSED PHOTOBIOREACTOR PRODUCTION SYSTEMS
    • A COST EFFECTIVE WAY OF PRODUCING HIGH YIELD STRAINS OF MICROALGAE
    • 1ST STEP
      • HIGH OIL YIELDING MICROALGAE STRAINS GROW IN CLOSED PHOTOBIOREACTORS TO PRODUCE BIOMASS
    • 2ND STEP
      • MICROALGAE ENTER AN OPEN POND PRODUCTION SYSTEM CONSISTING OF NUTRIENT RESTRICTIONS AND OTHER STRESSORS TO PROMOTE BIOSYNTHESIS OF OIL
heterotrophic
HETEROTROPHIC
  • AEROBIC RESPIRATION PROCESS
  • MICROALGAE GROWS ON CARBON SUBSTRATES INSIDE TANK BIOREACTORS OR FERMENTERS
  • PROCESS IS INDEPENDENT OF LIGHT
  • THE ENERGY IS PROVIDED BY THE CARBON WITHIN THE SUBSTRATES
  • VIABLE FOR LARGE SCALE PRODUCTION OF MICROALGAE
  • LOWER SET-UP AND HARVESTING COSTS THAN PHOTOAUTOTROPHIC SYSTEMS
  • REQUIRES MORE ENERGY THAN PHOTOAUTOTROPHIC SYSTEMS
mixotrophic
MIXOTROPHIC
  • COMBINATION OF PHOTOAUTOTROPHIC AND HETEROTROPHIC PRODUCTION SYSTEMS
  • LIGHT IS NOT A RESTRICTING FACTOR
  • ALGAE IS EITHER PHOTOSYNTHESIZED OR INGESTS ORGANIC MATTER THROUGH AEROBIC RESPIRATION
  • RESEARCH ONGOING
conversion technologies
CONVERSION TECHNOLOGIES
  • REQUIRED TO CONVERT MICROALGAE BIOMASS INTO USABLE FUEL

[13]

pyrolysis
PYROLYSIS
  • CONVERTS BIOMASS TO BIO-OIL, SYNGAS, AND CHARCOAL
  • DECOMPOSES BIOMASS WITH THE ADDITION OF HEAT AND THE ABSENCE OF OXYGEN

[3]

pyrolysis28
PYROLYSIS
  • THREE TYPES
    • FLASH PYROLYSIS
    • FAST PYROLYSIS
    • SLOW PYROLYSIS

[13]

transesterification
TRANSESTERIFICATION
  • CONVERTS FATTY ACIDS RETRIEVED FROM BIO-OIL INTO BIODIESEL
  • CHEMICAL REACTION IN WHICH TRIGLYCERIDES REACT TOGETHER WITH ALCOHOL TO PRODUCE FATTY ACID METHYL ESTERS (FAME) AND GLYCEROL
  • FAME HAS CHEMICAL AND PHYSICAL PROPERTIES SIMILAR TO CONVENTIONAL DIESEL

http://www.chevronglobalaviation.com/docs/5719_Aviation_Addendum._webpdf.pdf

aviation challenges
AVIATION CHALLENGES
  • LOW TEMPERATURE PROPERTIES
  • OXIDATIVE DEGRADATION
low temperature properties
LOW TEMPERATURE PROPERTIES
  • CRUISING AT 30,000 EXPOSES FUEL TEMPERATURES BELOW -40°C
  • AT SUCH LOW TEMPERATURES, BIODIESEL STARTS TO FREEZE
  • IMPORTANT PROPERTIES INCLUDE
    • POUR POINT TEMPERATURE
    • CLOUD POIN TEMPERATURE
    • KINEMATIC VISCOSITY
low temperature properties32
LOW TEMPERATURE PROPERTIES
  • POUR POINT TEMPERATURE
    • REFERS TO THE LOWEST TEMPERATURE AT WHICH PUMPING OF THE FUEL IS POSSIBLE.
    • BELOW THIS POINT, BIODIESEL CAN START TO PLUG PIPELINES.
  • CLOUD POINT TEMPERATURE
    • REFERS TO THE TEMPERATURE AT WHICH WAX STARTS TO FORM IN BIODIESEL.
    • THE WAX THICKENS BIODIESEL
    • LEADS TO CLOGGING OF FILTERS AND INJECTORS
  • VISCOSITY
    • DESCRIBES THE FLUIDS RESISTANCE TO FLOW
    • FUELS WITH HIGH VISCOSITY HAVE A TOUGH TIME FLOWING THROUGH PIPES
low temperature properties33
LOW TEMPERATURE PROPERTIES
  • LITTLE TO NO RESEARCH ON IMPROVING LOW TEMPERATURE PROPERTIES OF MICROALGAL BIODIESEL
  • RESEARCH AVAILABLE ON IMPROVING LOW TEMPERATURE PROPERTIES OF SOYBEAN BIODIESEL
  • SIMILAR APPROACH CAN BE TAKEN TO IMPROVE LOW TEMPERATURE PROPERTIES OF MICROALGAE BIODIESEL
low temperature properties34
LOW TEMPERATURE PROPERTIES
  • TWO MAIN APPROACHES
    • WINTERIZATION
    • ADDITION OF ADDITIVES
winterization
WINTERIZATION
  • PROCESS OF SEPARATING PART OF THE OIL THAT HAS SOLIDIFICATION TEMPERATURE THAT IS BELOW SPECIFIC CUT-OFF VALUE
  • BALANCES AN INACTIVE MIXTURE OF METHYL ESTERS AT A TEMPERATURE THAT IS BETWEEN ITS CLOUD POINT AND POUR POINT
winterization36
WINTERIZATION
  • DURING THE PROCESS, SATURATED METHYL ESTER PERCIPATE AND FORM SMALL WAX LIKE CRYSTALS IN LIQUID PHASE
  • FILTERING OUT THESE CRYSTALS RESULTS IN A BIODIESEL WITH IMPROVED LOW TEMPERATURE PROPERTIES
  • MULTIPLE ITTERATIONS MIGHT BE REQUIRED
oxidative degradation
OXIDATIVE DEGRADATION
  • CAUSES OF OXIDATION
    • EXPOSURE TO OXYGEN THROUGH AIR
    • PRESENCE OF LIGHT
    • HIGH TEMPERATURES
    • PEROXIDES
  • BIO-OILS CONTAIN WITHIN FATTY ACIDS WITH DOUBLE BONDS
  • THESE DOUBLE BONDS CAN REACT WITH OXYGEN MOLECULES THUS CAUSING OXIDATION
oxidative degradation38
OXIDATIVE DEGRADATION
  • AFTER OXIDATION HYDROPEROXIDES ARE ATTACHED TO THE FATTY ACID CHAIN
  • DEGRADED CHAINS TEND TO POLYMERIZE
  • HOOKING TOGETHER IN VARIOUS SUBSTANCES INCLUDING GUMS THAT CAN CLOG UP PARTS
oxidative degradation39
OXIDATIVE DEGRADATION
  • CURRENT RESEARCH INVOLVES LENGTHNING THE STABILITY PERIOD OF BIODIESEL THROUGH ADDITION OF ANTIOXIDANTS
antioxidants
ANTIOXIDANTS
  • DELAY THE START OF OXIDATION
  • ALLOWS THE USE OF CURRENT INFRASTRUCTURE
    • STORAGE TANKS
    • HANDLING TECHNIQUES
    • DESIGN CHANGES
  • CAN OCCUR NATURALLY
    • VITAMIN E
  • OR MANUFACTURED SYNTHETICALLY
    • BUTYLATED HYDROXYANISOL
    • PROPYL GALLATE
  • FACTORS EFFECTING SUCCESS OF ANTIOXIDANTS
    • FATTY ACID PROFILE OF THE OIL
    • STORAGE CONDITIONS
    • AMOUNT OF NATURALLY OCCURING ANTIOXIDANTS
conclusion
CONCLUSION
  • ALTHOUGH MICROALGAE BIODIESEL PROVIDES MANY INCENTIVES AS A REPLACEMENT FUEL FOR JET FUEL MUCH RESEARCH AND DEVELOPMENT IS STILL NEEDED
  • BLENDS OF PETROLEUM DIESEL AND BIODIESEL CONTAINING UPTO (20 VOL% BIODIESEL) HAVE BEEN TESTED WITH ACCEPTABLE RESULTS
  • OBJECTIVE WAS TO CUT OFF OUR DEPENDENCE ON PETROLEUM, MUCH WORK IS STILL NEEDED
refrences
REFRENCES
  • [1] Ashworth, John “Jet Fuel From Microalgal Lipids.” United States Department of Energy. July 2006. National Renewable Energy Laboratory. PDF Document. 5 Mar. 2010.
  • [2] Horton, Sarah. “The 1973 Oil Crisis.” Pennsylvania Environthon Website.
  • http://www.envirothonpa.org/documents/The1973OilCrisis.pdf. Web. 5 Mar. 2010.
  • [3] Drapcho, Caye M., Nghiem Phu Nhuan, and Terry H. Walker. Biofuels Engineering Process Technology. New York: McGraw-Hill, 2008.
  • [4] Marbach, Timothy. “STEM Scholars Lecture on Sustainable Energy.” STEM Scholars Lecture Series. 27 Feb. 2007. California State University, Sacramento. Microsoft PowerPoint File. 5 Mar. 2010.
  • [5] Daggett, David L. et al. “Alternate Fuels for Use in Commercial Aircrafts.” National Aeronautics and Space Administration. 01 April 2008. National Aeronautics and Space Administration John H. Glenn Research Center. PDF Document. 5 Mar. 2010.
  • [6] PEW Center on Global Climate Change. “Current and Emerging Biofuel Pathways.” PEW Center on Global Climate Change. http://www.pewclimate.org/docUploads/images/Fig2-BiofuelsPathways.preview.GIF.
  • Web. 5 Mar. 2010.
  • [7] Boyle, Godfrey. Renewable Energy: Power for a Sustainable Future. Oxford: Oxford, 2004.
  • [8] Kaltschmitt, Martin et al. Renewable Energy: Technology, Economics and Environment. New York: Springer, 2007.
  • [9] Hileman, James I. et al. “The Feasibility and Potential Environmental Benefits of Alternative Fuels for Commercial Aviation.” International Congress of the Aeronautical Sciences. 14 Sep. 2008. http://icas-proceedings.net/ICAS2008/PAPERS/563.PDF. Web, 5 Mar 2010.
  • [10] Darzins, Al. “Recent and Current Research & Roadmapping Activities: Overview.” United States Department of Energy. 9 December 2008. National Renewable Energy Laboratory. PDF Document. 5 March 2010.
refrences43
REFRENCES
  • [11] Deng, Xiaodong, Yajun Li, and Xiaowen Fei. “Microalgae: A Promising Feedstock for Biodiesel.” African Journal of Microbiology Research, Volume 3, December 2009: 1008-1014. Web. 5 Mar. 2010.
  • [12] “Alternative Jet Fuel.” Chevron Global Aviation, Oct. 2006. Chevron Corporation. PDF Document. Web. 20 Mar. 2010. http://www.chevronglobalaviation.com/docs/5719_Aviation_Addendum._webpdf.pdf
  • [13] Brennan, Liam and Philip Owende. “Biofuels From Microalgae- A Review of Technologies for Production, Processing, and Extractions of Biofuels and Co-Products.” Renewable and Sustainable Energy Reviews, Volume 14, February 2010: 557-577. Web. 15 Mar. 2010.
  • [14] Tubular Photobioreactors. Biosciences and Agricultural Engineering Department, California Polytechnic State University. http://brae.calpoly.edu/CEAE/images/biofuels3.gif. Web. 18 Mar. 2010.
  • [15] Smith, Paul C. et al. “Improving the Low-Temperature Properties of Biodiesel: Methods and Consequences.” Renewable Energy, Volume 35, June 2010: 1145-1151. Web. 21 Mar. 2010.
  • [16] Background Knowledge Pour Point. PSL Systemtechnik Website.http://www.psl-systemtechnik.de/pour_point_tester_knowledge.html?&L=1. Web. 15 Mar. 2010.
  • [17] Aircraft Engine Fuel System Diagram. Tips and Guides for Do-It-Yourselfers Website. http://diychamber.com/wp-content/uploads/2010/01/aircraft-engine-fuel-system-diagram.png. Web. 15 Mar. 2010.
  • [18] Dunn, R.O., M. W. Shockley, and M. O. Bagby. “Improving the Low-Temperature Properties of Alternative Diesel Fuels: Vegetable Oil-Derived Methyl Esters.” Journal of the American Oil Chemists’ Society, Volume 73, December 1996: 1719-1728. Web. 15 Mar. 2010.
  • [19] Knothe, Gerhard. “Some Aspeccts of Biodiesel Oxidative Stability.” Fuel Processing Technology, Volume 88, July 2007: 669-677. Web. 15 Mar. 2010.