570 likes | 671 Views
Curso de especialização em Engenharia Elétrica com Ênfase em Análise de Sistemas de Energia e Automação e Controle de Processos (Curto-Circuito). Prof. Ghendy Cardoso Jr. UFPA/NESC/GSEI ghendy@ufpa.br. UFPA/NESC/GSEI. Aplicação.
E N D
Curso de especialização em Engenharia Elétrica com Ênfase em Análise de Sistemas de Energia e Automação e Controle de Processos(Curto-Circuito) Prof. Ghendy Cardoso Jr. UFPA/NESC/GSEI ghendy@ufpa.br
UFPA/NESC/GSEI Aplicação O estudo de curto-circuito em sistemas elétricos normalmente ocorre no processo de planejamento e projeto do sistema, bem como em fases posteriores já no sistema existente, como parte de rotinas de ampliações, mudanças e ajustes necessários.
UFPA/NESC/GSEI Estimar valores máximos e mínimos das correntes de curto-circuito Finalidade Valores máximos (primeiro ciclo): Capacidade de interrupção de fusíveis e CBs de BT; Capacidade momentânea de CBs de MT e AT (> 1 kV) Dimensionamento de componentes solicitações dinâmicas e efeitos térmicos decorrentes do curto-circuito; Possibilitar o dimensionamento de disjuntores; Permitir ajustes e coordenação de relés de proteção. especificação de pára-raios. Valores mínimos (interrupção e 30 ciclos): Capacidade de interrupção de CBs de MT e AT (> 1 kV) Ajustes da proteção (relés temporizados)
UFPA/NESC/GSEI Tipos de curto-circuito Aberturas mono e bipolar
UFPA/NESC/GSEI • O defeito FFF, do ponto de vista da estabilidade, é o + crítico • Defeito FF tem sempre intensidade inferior a do FFF • Curto FT e FFT tendem serem + severos a medida que Z0 diminui • Geralmente, sistemas industriais (2,4 -34,5 kV) a IccFT < IccFFF • Na alta tensão a relação entre IccFT e IccFFF varia. Análise dos defeitos
UFPA/NESC/GSEI Hipóteses simplificadoras Transmissão e subtransmissão Despreza-se as resistências; Admite-se impedância nula no ponto de defeito; Despreza-se as correntes de carga; Admite-se que todas as tensões geradas estejam em fase e sejam iguais em módulo. Desprezar Zs de CBs, TCs, conexões, etc.
UFPA/NESC/GSEI Icc = Vth Zth + zf Teoremas básicos Teorema da superposição Permite levar em conta a corrente de carga do sistema antes da falta (alta precisão). Teorema de Thevènin Para o cálculo da Icc.
UFPA/NESC/GSEI â V no inst. curto V=Vm*sem (wt+α) Simetria e assimetria das Icc â da Zth no ponto de defeito Icc assimétrica Icc simétrica
UFPA/NESC/GSEI Exemplo: Uma tensão alternada de 60Hz, valor eficaz de 100V é aplicada a um circuito RL série, pelo fechamento de uma chave. A resistência é de 10 ohms e a indutância de 0,1 H. a) Qual é o valor da componente dc da corrente, ao fechar a chave se, nesse instante, o valor instantâneo da tensão for de 50V? b) Qual é o valor instantâneo da tensão que produz a componente dc de valor máximo ao fechar a chave? c)Qual é o valor instantâneo da tensão que resulta na ausência de qualquer componente dc ao fechar a chave? d)Se a chave for fechada quando o valor instantâneo da tensão é zero, determine a corrente instantânea 0,5; 1,5; e 5,5 ciclos após? V=Vm*sem (wt+α)
UFPA/NESC/GSEI Componentes das Icc Icc real (parcialmente assimétrica)
UFPA/NESC/GSEI Componentes das Icc a) X’’ (até 0,1s); b) X’ (até 0,5s – 2s); c) Xs; d) Componente dc. e) Componente de C-C
UFPA/NESC/GSEI Contribuições das fontes de curto-circuito
UFPA/NESC/GSEI t = tempo em ciclos Iass = Kass.Isim t = tempo em ciclos Iass,pico = Kpico.Isim Exemplo: Considere que a Icc simétrica RMS = 50,000 A, com fator de potência de curto-circuito = 15% X/R = 6.5912. Ip = Is x Mp (Coluna 3 – da tabela) Ia = Is x Mm (Coluna 4 – da tabela) Ver Mp e Mn na tabela Is = 50,000 A RMS Simétrico Ip = 50,000 x 2.309 = 115,450 A Ia = 50,000 x 1.330 = 66,500 A RMS Assimétrico
A medida que X/R aumenta, Imax aumenta Imax sempre ocorre dentro do 1º ciclo p/ X/R=0,1 Imax ocorre em torno de 0,26 ciclos. p/ X/R≥15 Imax ocorre em torno de 0,5 ciclos.
UFPA/NESC/GSEI O disjuntor deve ser dimensionado para interromper a corrente existente no tempo de separação dos contatos * p/ ½ ciclo e X/R = 15
UFPA/NESC/GSEI Tipos de estudo
UFPA/NESC/GSEI Curto-circuito trifásico Não provoca desequilíbrio; Classificado como simétrico; Cálculo efetuado por fase; Considerar o circuito equivalente de seq. +.
UFPA/NESC/GSEI Transformação Y - delta
UFPA/NESC/GSEI Mudança de topologia x Icc
UFPA/NESC/GSEI Considere que a carga na barra 2 é suportada para perda de um elemento do sistema: Todas as LTs em serviço Icc 2 = -j20 pu Saída da LT 2-3 Icc 2 = -j10 pu Na distribuição: Saída do trafo 2-4 perda de todas as cargas do alimentador; Com o sistema normal Icc 9 = -j0,23 pu Perda de um dos geradores Icc 9 = -j0,229 pu • Logo, o SD vê a fonte quase como uma fonte de Z constante. • Pouco sensível às mudanças sofridas pelo sistema de transmissão.
UFPA/NESC/GSEI Exemplo: Gerador: 30 MVA, 13,8 kV, X”d=15% T1: 35 MVA, 13,2 ∆ /115 Yaterrado kV, X=10% LT1: X1=80 Ω T2: 35 MVA, 115 Yaterrado/ 13,2 ∆ kV, X=10% m1: 20 MVA, 12,5 kV, X”d = 20% m2: 10 MVA, 12,5 kV, X”d = 20% Determine as tensões de fase e linha na barra “k”, em kV?
UFPA/NESC/GSEI Influência da corrente de carga Um alternador e motor síncrono têm para valores nominais 30 MVA, 13,2 kV e ambos possuem X”=20%. XLT = 10% na base dos valores nominais da máquina. O motor está consumindo 20 MW com cosΦ=0,8 em avanço e tensão terminal 12,8 kV, quando ocorre uma falta 3Φ entre seus terminais. Determine a I” no alternador, no motor e na falta? Conclusão: “A corrente de curto circuito é a mesma, com ou sem carga, o que muda é a contribuição das linhas”
UFPA/NESC/GSEI = Curto-circuito 3Φ por Zbus
UFPA/NESC/GSEI = + Para um curto-circuito na barra 3 1 2 De modo geral para uma falta na barra K:
UFPA/NESC/GSEI Curto-circuito 3Φ por Zbus Determine o Icc 3Φ na barra 2? Determine as contribuições nas linhas? Determine as contribuições dos geradores?
UFPA/NESC/GSEI Componentes simétricas Teorema de Fortescue (1918) “Qualquer grupo desequilibrado de n fasores associados, do mesmo tipo, pode ser resolvido em n grupos de fasores equilibrados, denominados componentes simétricas dos fasores originais”. Para sistema trifásico n = 3 { Seq. + Seq. – Seq. 0
UFPA/NESC/GSEI Equação de síntese Equação de análise [ F ]
UFPA/NESC/GSEI Considerações sobre Comp. Seq. 0 • Não existem componentes simétricas de seqüência zero se for nula a soma dos fasores que constituem o sistema trifásico desequilibrado original; • Não existem componentes de seq. 0 nas tensões de linha; • A soma das tensões de fase não é necessariamente = 0 e portanto estas tensões podem conter comp. seq. 0; • A corrente de seqüência 0 só existe se houver um circuito fechado no qual possa circular.
UFPA/NESC/GSEI Considerações sobre Comp. Seq. 0
UFPA/NESC/GSEI Considerações sobre Comp. Seq. 0
UFPA/NESC/GSEI Considerações sobre Comp. Seq. 0
UFPA/NESC/GSEI Modelagem de componentes Modelos de linhas de transmissão LT longa LT curta LT média
UFPA/NESC/GSEI Modelagem de componentes Modelo de geradores
UFPA/NESC/GSEI Modelagem de componentes Modelo transformadores Seqüência + Seqüência -
UFPA/NESC/GSEI Modelagem de componentes Modelo transformadores Seqüência 0
UFPA/NESC/GSEI Modelagem de componentes Modelo transformadores de 3 enrolamentos Seqüência + e - Seqüência 0
UFPA/NESC/GSEI Modelagem de componentes Modelo transformadores reguladores Seqüência 0 Seqüência + e -
UFPA/NESC/GSEI Modelagem de componentes Modelo transformadores reguladores Seqüência 0 Seqüência + e -
UFPA/NESC/GSEI Curto-circuito F-T Condições de contorno: Ifb = Ifc = 0 Vfa = Zf . Ifa
UFPA/NESC/GSEI Exemplo: Gerador: Yn 30 MVA, 13,8 kV, X”d1=15%, X”2=15%, X”0=5%, Xn=31,51% T1: 30 MVA, 13,8 kV∆/120 kVYn, X=7,86% LT1: 30 MVA, 120 kV, X1=16,66%, X0=52,10% T2: 30 MVA, 120 kV Yn/ 13,8 kV∆, X=7,86% m1: Yn 30 MVA, 13,8 kV, X”d1 = 24,60%, X”2=24,60%, X”0=6,15%, Xn=20% m2: Y 30 MVA, 13,8 kV, X”d1 = 49,20%, X”2=49,20%, X”0=12,30% Determine as tensões de fase e linha na barra “k”, em kV?
UFPA/NESC/GSEI Influência da corrente de carga Gerador: Yn 7,5 MVA, 4,16 kV, X”d1=10%, X”2=10%, X”0=5%, Xn=6% T1: 7,5 MVA, 4,16 kV Yn / 600 V∆, X=10% m1: Yn 7,5 MVA, 600 V, X”d1 = 30%, X”2=30%, X”0=6%, Xn=3% Antes da falta: motor 5000 HP, cosΦ=0,85 atrasado, η=88% Determine as contribuições do gerador e motor p/ C-C FT em D (considere a influência da carga)?
UFPA/NESC/GSEI Curto-circuito FF Condições de contorno: Ifa = 0 Ifb+Ifc = 0 Vfb – Vfc = Zf . Ifb
UFPA/NESC/GSEI Exemplo: Exemplo: Gerador:Yn 30 MVA, 13,8 kV, X”d1=15%, X”2=15%, X”0=5%, Xn=31,51% T1: 30 MVA, 13,8 kV ∆/120 kV Yn, X=7,86% LT1: 30 MVA, 120 kV, X1=16,66%, X0=52,10% T2: 30 MVA, 120 kV Yn / 13,8 kV ∆, X=7,86% m1: Yn 30 MVA, 13,8 kV, X”d1 = 24,60%, X”2=24,60%, X”0=6,15%, Xn=20% m2: Y 30 MVA, 13,8 kV, X”d1 = 49,20%, X”2=49,20%, X”0=12,30% Determine as tensões de fase e linha na barra “k”, em kV?
UFPA/NESC/GSEI Curto-circuito FF-T Condições de contorno: Ifa = 0 Vfb = Zf . Ifb + ZG.(Ifc + Ifb) Vfc = Zf . Ifc + ZG.(Ifc + Ifb)
UFPA/NESC/GSEI Exemplo: Gerador: Yn 30 MVA, 13,8 kV, X”d1=15%, X”2=15%, X”0=5%, Xn=31,51% T1: 30 MVA, 13,8 kV∆/120 kVYn, X=7,86% LT1: 30 MVA, 120 kV, X1=16,66%, X0=52,10% T2: 30 MVA, 120 kV Yn/ 13,8 kV∆, X=7,86% m1: Yn 30 MVA, 13,8 kV, X”d1 = 24,60%, X”2=24,60%, X”0=6,15%, Xn=20% m2: Y 30 MVA, 13,8 kV, X”d1 = 49,20%, X”2=49,20%, X”0=12,30% Determine as tensões de fase e linha na barra “k”, em kV?
UFPA/NESC/GSEI Cálculo de curtos-circuitos assimétricospor Zbus Curto-circuito F-T (equações para um defeito na barra k, fase a) Cálculo das tensões nas barras
UFPA/NESC/GSEI Cálculo de curtos-circuitos assimétricospor Zbus Curto-circuito FF (equações para um defeito na barra k, fases bc) Cálculo das tensões nas barras Cálculo da corrente de defeito no ponto de defeito Lembrando que:
UFPA/NESC/GSEI Curto-circuito FF-T (equações para um defeito na barra k, fases bc + terra) Cálculo das tensões nas barras Cálculo da corrente de defeito no ponto de defeito