1 / 76

Synthesis of the Kedarcidin Chromophore Aglycon

Synthesis of the Kedarcidin Chromophore Aglycon. Mégan Bertrand-Laperle Prof. Keith Fagnou Department of Chemistry Center for Catalysis Research and Innovation University of Ottawa. Enediyne Natural Products. Calicheamicin α 1. Neocarzinostatin Chromophore. Kedarcidin Chromophore.

zanthe
Download Presentation

Synthesis of the Kedarcidin Chromophore Aglycon

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Synthesis of the Kedarcidin Chromophore Aglycon Mégan Bertrand-Laperle Prof. Keith Fagnou Department of Chemistry Center for Catalysis Research and Innovation University of Ottawa

  2. Enediyne Natural Products Calicheamicin α1 Neocarzinostatin Chromophore Kedarcidin Chromophore Dynemicin A C-1027 Chromophore 2

  3. Discovery of Kedarcidin « most complex and reactive of the natural enediyne antitumor agents isolated to date » A. G. Myers • 1991 – BMS • Kedarcidin isolated from soils collected in India • 1992 – BMS Structure of the chromophore elucidated • 1997 and 2007 – Hirama and Myers Revised the chromophore structure • Potent antiproliferative and antibiotic activities • Chromophore is highly unstable under acidic and basic conditions and upon concentration 3 Lam, K. S.; Hesler, G. A.; Gustavson, D. R.; Crosswell, A. R.; Veith, J. M.; Forenze, S. J. Antibiot. 1991, 44,472.

  4. Mode of Action of Kedarcidin Kedarcidin Chromoprotein Kedarcidin Chromophore DNA radical Single strand breaks Smith, A. L.; Nicolaou, K. C. J. Med. Chem. 1996, 39. 4

  5. Kedarcidin Revised Structure • Chromoprotein Molecular weight is 12,400 D • Protein Consists of 112 to 114 amino acids Ratio vary from 1:1 to 18:1 • Stabilizes and delivers the chromophore 5

  6. Kedarcidin Revised Structure • Chromoprotein Molecular weight is 12,400 D • Protein • Consists of 112 to 114 amino acids • Ratio vary from 1:1 to 18:1 • Stabilizes and delivers the chromophore • Chromophore • 1 dienediyne 6

  7. Kedarcidin Revised Structure • Chromoprotein Molecular weight is 12,400 D • Protein • Consists of 112 to 114 amino acids • Ratio vary from 1:1 to 18:1 • Stabilizes and delivers the chromophore • Chromophore 1 dienediyne • One ansa-bridge • 17 membered ring macrolactone 7

  8. Kedarcidin Revised Structure • Chromoprotein Molecular weight is 12,400 D • Protein • Consists of 112 to 114 amino acids Ratio vary from 1:1 to 18:1 • Stabilizes and delivers the chromophore • Chromophore 1 dienediyne • One ansa-bridge • 17 membered ring macrolactone • 14 chiral centers 8

  9. Kedarcidin Revised Structure • Chromoprotein Molecular weight is 12,400 D • Protein • Consists of 112 to 114 amino acids • Ratio vary from 1:1 to 18:1 • Stabilizes and delivers the chromophore • Chromophore 1 dienediyne • One ansa-bridge • 17 membered ring macrolactone • 14 chiral centers • Two carbohydrate units 9

  10. Kedarcidin Revised Structure • Chromoprotein Molecular weight is 12,400 D • Protein Consists of 112 to 114 amino acids • Ratio vary from 1:1 to 18:1 • Stabilizes and delivers the chromophore • Chromophore 1 dienediyne • One ansa-bridge • 17 membered ring macrolactone • 14 chiral centers • Two carbohydrate units • One element of atropisomerism 10

  11. Atropisomerism in Molecules • Atropisomers: stereoisomers resulting from limited free rotation around single bond at room temperature • First detected in 1922 • Axial chirality: arrangement of groups around an axis • Planar chirality: arrangement of groups with respect to a plane Axial Chirality Planar Chirality 11 Lloyd-Williams, P.; Giralt, E. Chem. Soc. Rev. 2001, 30, 145.

  12. Atropisomerism in Kedarcidin Chromophore Major atropisomer Minor atropisomer • Kedarcidin: Planar chirality Interconversion possible at ambient temperature Single atropisomer 12 Myers, A. G.; Hurd, A. R.; Hogan, P. C. J.Am. Chem. Soc. 2002, 124, 4583.

  13. Issues with Kedarcidin Chromophore • Stability of enediyne moiety limited under concentration • All intermediates stored in dilute form at -20°C • Yields obtained using internal standard (1H NMR) Reng, F.; Hogan, P. C.; Anderson, A. J.;Myers, A. G. J.Am. Chem. Soc. 2007, 129,5381. 13

  14. Syntheses of Kedarcidin Chromophore Aglycon Aldehyde Addition Cyclisation Transannular Cyclisation M. Hirama 2007 (partial synthesis) A. G. Myers 2002/2007 14

  15. Hirama’s Retrosynthesis 15

  16. Hirama’s Synthesis 16 Kawata, S.; Ashizawa, S.; Hirama, M. J.Am. Chem. Soc. 1997, 119,12012.

  17. Arndt-Eistert Homologation - Wolff Rearrangement • Arndt-Eistert Homologation Wolff Rearrangement Meier, H.; Zeller, K.-P. Angew. Chem. Int. Ed. Engl.1975, 14, 32. 17

  18. Hirama’s Synthesis 18 Kawata, S.; Ashizawa, S.; Hirama, M. J.Am. Chem. Soc. 1997, 119,12012.

  19. Electrocyclisation 19 Myers, A. G.; Horiguchi. Y. Tetrahedron Lett. 1997, 38,4363.

  20. Hirama’s Synthesis 20 Kawata, S.; Ashizawa, S.; Hirama, M. J.Am. Chem. Soc. 1997, 119,12012.

  21. Hirama’s Synthesis 21 Kawata, S.; Ashizawa, S.; Hirama, M. J.Am. Chem. Soc. 1997, 119,12012.

  22. Hirama’s Synthesis Kawata, S.; Ashizawa, S.; Hirama, M. J.Am. Chem. Soc. 1997, 119,12012. Yoshiramura, F.; Lear, M. J.; Ohashi, I., Koyama, Y.; Hirama, M. Chem. Commun. 2007, 29, 3057. 22

  23. Hirama’s Synthesis 23 Koyama, Y.; Lear, M. J.; Yoshimura, F.; Ohashi, I.; Mashimo, T.; Hirama, M. Org. Lett. 2005, 7,267.

  24. Reductive Opening 24 Ferrier, R. J.; Schmidt, P.; Tyler, P. C. J. Chem. Soc. Perkin, Trans. 11985, 301.

  25. Hirama’s Synthesis 25 Koyama, Y.; Lear, M. J.; Yoshimura, F.; Ohashi, I.; Mashimo, T.; Hirama, M. Org. Lett. 2005, 7,267.

  26. Hirama’s Synthesis 26 Koyama, Y.; Lear, M. J.; Yoshimura, F.; Ohashi, I.; Mashimo, T.; Hirama, M. Org. Lett. 2005, 7,267.

  27. Grignard via Iodine-Magnesium Exchange 27 Koyama, Y.; Lear, M. J.; Yoshimura, F.; Ohashi, I.; Mashimo, T.; Hirama, M. Org. Lett. 2005, 7,267.

  28. Hirama’s Synthesis 28 Koyama, Y.; Lear, M. J.; Yoshimura, F.; Ohashi, I.; Mashimo, T.; Hirama, M. Org. Lett. 2005, 7,267.

  29. Hirama’s Synthesis Iida, K.; Hirama, M. J. Am. Chem. Soc.1994, 116, 10310. Yoshiramura, F.; Lear, M. J.; Ohashi, I., Koyama, Y.; Hirama, M. Chem. Commun. 2007, 29, 3057. 29

  30. Hirama’s Synthesis Koyama, Y.; Lear, M. J.; Yoshimura, F.; Ohashi, I.; Mashimo, T.; Hirama, M. Org. Lett. 2005, 7,267. Yoshiramura, F.; Lear, M. J.; Ohashi, I., Koyama, Y.; Hirama, M. Chem. Commun. 2007, 29, 3057. 30

  31. Hirama’s Synthesis Koyama, Y.; Lear, M. J.; Yoshimura, F.; Ohashi, I.; Mashimo, T.; Hirama, M. Org. Lett. 2005, 7,267. Yoshiramura, F.; Lear, M. J.; Ohashi, I., Koyama, Y.; Hirama, M. Chem. Commun. 2007, 29, 3057. 31

  32. Hirama’s Synthesis Koyama, Y.; Lear, M. J.; Yoshimura, F.; Ohashi, I.; Mashimo, T.; Hirama, M. Org. Lett. 2005, 7,267. Yoshiramura, F.; Lear, M. J.; Ohashi, I., Koyama, Y.; Hirama, M. Chem. Commun. 2007, 29, 3057. 32

  33. Hirama’s Synthesis Koyama, Y.; Lear, M. J.; Yoshimura, F.; Ohashi, I.; Mashimo, T.; Hirama, M. Org. Lett. 2005, 7,267. Yoshiramura, F.; Lear, M. J.; Ohashi, I., Koyama, Y.; Hirama, M. Chem. Commun. 2007, 29, 3057. 33

  34. Hirama’s Synthesis Koyama, Y.; Lear, M. J.; Yoshimura, F.; Ohashi, I.; Mashimo, T.; Hirama, M. Org. Lett. 2005, 7,267. Yoshiramura, F.; Lear, M. J.; Ohashi, I., Koyama, Y.; Hirama, M. Chem. Commun. 2007, 29, 3057. 34

  35. Hirama’s Synthesis Koyama, Y.; Lear, M. J.; Yoshimura, F.; Ohashi, I.; Mashimo, T.; Hirama, M. Org. Lett. 2005, 7,267. Yoshiramura, F.; Lear, M. J.; Ohashi, I., Koyama, Y.; Hirama, M. Chem. Commun. 2007, 29, 3057. 35

  36. Hirama’s Synthesis 36 Yoshiramura, F.; Lear, M. J.; Ohashi, I., Koyama, Y.; Hirama, M. Chem. Commun. 2007, 29, 3057.

  37. Hirama’s Synthesis 37 Yoshiramura, F.; Lear, M. J.; Ohashi, I., Koyama, Y.; Hirama, M. Chem. Commun. 2007, 29, 3057.

  38. Peptide Coupling HOAt EDC.HCl Carpino, L. A. J. Am. Chem. Soc.1993, 115, 4397. 38

  39. Hirama’s Synthesis 39 Yoshiramura, F.; Lear, M. J.; Ohashi, I., Koyama, Y.; Hirama, M. Chem. Commun. 2007, 29, 3057.

  40. Hirama’s Synthesis 40 Yoshiramura, F.; Lear, M. J.; Ohashi, I., Koyama, Y.; Hirama, M. Chem. Commun. 2007, 29, 3057.

  41. Hirama’s Synthesis Unstable, use immediately 41 Yoshiramura, F.; Lear, M. J.; Ohashi, I., Koyama, Y.; Hirama, M. Chem. Commun. 2007, 29, 3057.

  42. Hirama’s Synthesis Unstable, use immediately 42 Yoshiramura, F.; Lear, M. J.; Ohashi, I., Koyama, Y.; Hirama, M. Chem. Commun. 2007, 29, 3057.

  43. Hirama’s Synthesis Unstable, use immediately 43 Yoshiramura, F.; Lear, M. J.; Ohashi, I., Koyama, Y.; Hirama, M. Chem. Commun. 2007, 29, 3057.

  44. Hirama’s Synthesis Unstable, use immediately 44 Yoshiramura, F.; Lear, M. J.; Ohashi, I., Koyama, Y.; Hirama, M. Chem. Commun. 2007, 29, 3057.

  45. Hirama’s Synthesis Unstable, use immediately 45 Yoshiramura, F.; Lear, M. J.; Ohashi, I., Koyama, Y.; Hirama, M. Chem. Commun. 2007, 29, 3057.

  46. Hirama’s Synthesis Unstable, use immediately 46 Yoshiramura, F.; Lear, M. J.; Ohashi, I., Koyama, Y.; Hirama, M. Chem. Commun. 2007, 29,3057.

  47. Hirama’s Synthesis 47 Yoshiramura, F.; Lear, M. J.; Ohashi, I., Koyama, Y.; Hirama, M. Chem. Commun. 2007, 29,3057.

  48. Overview Hirama’s Synthesis • Key step: Nucleophilic Addition-Cyclisation • 1% overall yield from the longest linear sequence (16 steps) • Still 4 steps to achieve the total synthesis of kedarcidin chromophore aglycon 48

  49. Myers’ Retrosynthesis 49

  50. Myers’ Synthesis 50 Myers, A. G.; Horiguchi. Y. Tetrahedron Lett. 1997, 38,4363.

More Related