1 / 61

Applying Mining Concepts to Accessing Asteroid Resources

Applying Mining Concepts to Accessing Asteroid Resources. Mark Sonter, Asteroid Enterprises Pty Ltd, Brisbane, sontermj@tpg.com.au ph +61 7 3297 7653, and ‘The Asteroid Mining Group’: Al Globus, Steve Covey, Chris Cassell , & Jim Luebke ; with Bryan Versteeg & James Wolff.

zahina
Download Presentation

Applying Mining Concepts to Accessing Asteroid Resources

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Applying Mining Concepts to Accessing Asteroid Resources Mark Sonter, Asteroid Enterprises Pty Ltd, Brisbane, sontermj@tpg.com.auph +61 7 3297 7653, and ‘The Asteroid Mining Group’: Al Globus, Steve Covey, Chris Cassell, & Jim Luebke; with Bryan Versteeg & James Wolff

  2. Mining the Near-Earth Asteroids: -- There are veryhigh-value resources in space, awaiting the development of an in-space market; And the technology to get to them, and retrieve them, is available now… Images from William K Hartmann

  3. Asteroid characterization: • What do they look like? • How big are they? • Why are we interested in them? • What ‘goodies’ do they contain? • How many are there? • What structure / fabric / strength? • How (pray tell) might we mine them??

  4. Asteroid 951 Gaspra (18 km x 10 km x 9 km) - silicate

  5. Asteroid 243 Ida (59 km x 23 km x 19 km) - silicate

  6. 253 Mathilde (66 km x 48 km x 44 km) - carbonaceous

  7. Eros 433 Eros (33 km x 13 km) - silicate

  8. Itokawa with International Space Station to scale It’s a rubble pile with lots of void space:  = 1.95 g/cc Regolith (present even in micro-g!!) is gravel-size particles

  9. Asteroids offer both Threat and Promise – • Threat of impacts delivering regional or global disaster. • Promise of resources to support Humanity’s long-term prosperity and expansion into the Solar System. • The technologies to tap asteroid resources will also enable the deflection of at least some of the Impact-Threat objects -- It is likely that the Near Earth Asteroids will be major resource opportunities of the mid 21st century -- Thus we should seek to develop these technologies, to meet the emerging in-space markets…

  10. Asteroid Resources High and increasing discovery rate of NEAs Growing belief that NEAs contain easily extractable high-value products Accessing asteroid resources is dependent on development of market(s) for mass-in-orbit How to compare schemes for mining a NEA and returning the product to market?? Capex, payback time, andnet present valueare critical design drivers, in choice of target, market, product, mission type, extraction process, and propulsion system

  11. Asteroid structure and strength • Asteroids retain deep regolith (except the smallest?) • Often heavily fractured or rubble piles • Have significant void space (‘macroporosity’) • Many appear to contain H2O in clays or salts • Many appear to contain kerogen-like material (!!) • Many appear to contain Ni-Fe and PGMs • Some may be extinct / dormant comet cores • The value of these commodity products in space, is thousands of dollars per kilogram

  12. Products from asteroid mining: • Raw silicate, for use in space (ballast, shielding) • Water, & other volatiles, for use in space (propellant) • Ni-Fe metal, for use in space (construction) • PGMs, for return to Earth (catalyst for fuel cells) • Semiconductor metals, for use in space (solar arrays) Water can be used for PROPELLANT for the RETURN TRIP The in-space market for raw material is not yet a reality.... But all mass used in space and originating from Earth costs at present $10,000 per kg to launch, thus setting a rough lower limit on the potential value of these products…

  13. Lots of new knowledge: • New Targets (generated by search programs) • Images, Concepts and Understandings • But mining (and processing) is difficult, even on Earth! (we will come back to this, later--)

  14. -- Of course, the vast majority of the little fellas have not yet been found… As opposed to the 1 km ones, where the discovery rate has leveled off because most have now been found…

  15. There are literally millions undiscovered in the under 30 metre and under 10 metre size range…

  16. Huge increase in potential targets: Potentially Hazardous Asteroids: approach Earth orbit to < 7.5 x 106 km (0.05 AU) Apollos: 4700 (Earth crossers, sma  1 AU) Amors:  3300 (1 AU < Perihelion < 1.3 AU) Atens:  700 (Earth crossers, sma < 1 AU) Atiras:  10 (Orbit totally inside Earth’s) (1 AU = 150 x 106 km = radius of Earth’s orbit) - as of March 2012

  17. From Mike A’Hearn, P.I. Deep Impact: • 15% of NEAs have Jupiter Family Comet type orbits (and hence cometary in origin??) • Comets are  50% H2O by mass • Most ice is  1 to 3 thermal skin thicknesses deep (? say  10 m) • Comets have bulk density 0.5 g/cc and thus 75% empty space: highly porous!! • Weak: tensile strength <100 Pa from SL9 (at km scale); < 10 kPa from Deep Impact (at metre scale) • Thermal conductivity very low • Deep Impact excavated  5000 tonnes of ice from within 2 m of surface of Comet Wild (!!)

  18. Cryptocomet model: Loose & fluffy or cinder ‘lag deposit’, insulating the underlying icy matrix (? 1 metre) Densified underlying ice-clay-kerogen layer of thickness  2 metres Deep porous low density ice-clay-kerogen matrix How to mine this??

  19. We could encounter a weakly bound rubble pile – or a fragment of one: Large boulders, voids, ‘macroporosity’ at depth Grading finer to gravel regolith at surface ?? Ices in voids?? How to mine this??

  20. Impact development of megaregolith

  21. TerrestrialProject DevelopmentPath: • “Desktop” studies: what to look for, & where • Open-literature and proprietary data reviews • Reconnaissance of prospective target areas • Identification of potential targets • Field work identifies extended mineralization • Drillout of prospect to define orebody • Metallurgical testwork to confirm extractability • Project conceptual planning / prefeasibility studies • Bankable Costing & Feasibility Study (& EIS) • Funding and Project Go-Ahead • Construct and Commission

  22. Mining Engineering and Economics “Material is oreonly if you can mine, process, transport and market it for a profit”. Terrestrial Mine Project Planning involves choosing between competing mining & metallurgical extraction concepts, to: • Minimize Capital Expenditure (Capex), • Minimize operating cost (Opex), • Consistent with desired Production Rate, and also • Minimize payback time, and • Minimize project risk -and thereby- Maximize Expectation Net Present Value So must it be also, in Space Mining…

  23. Bankable Feasibility Study must develop: • A Mining Plan, based on an • Accurate orebody model, and a • Metallurgical Process Flowsheet, based on • Accurate understanding of the ore, which • optimises Recovery, and • minimizes Capex, Opex, & Payback Time, and • optimizes the Production Rate, so as to maximize the Expectation Net Present Value.

  24. Choice of Mining Plan and Process is often surprisingly difficult-- Some cautionary tales from Oz mining scene -- Olympic DamCu-U-Au project: very non-obvious mining and processing choices Mulga RocksU+ base metals project: ditto ditto Nolans Rare Earths project: very challenging process development Beverley UIn-Situ Leach: seriously compromised by lack of accurate orebody model…

  25. The “Economic Imperative” for Asteroid Mining: Maximize Expectation NPV implies  • Minimize project risk  Simplest possible extraction, processing, and propulsion systems – KISS principle • Minimize CAPEX  single or double launch, unmanned; • Maximize returned payload fraction  minimize return v including capture into Earth orbit • Minimize return v  target’s orbit should be low eccentricity and earth grazing; use lunar flyby capture • Minimize payback time  minimum duration mission  target asteroid semi-major axis  1 AU; • Synodic period constraint  ‘single season’ mine mission

  26. Asteroid Mining Project Economicswill be driven by • MINER MASS and LAUNCH COST • SPECIFIC MASS THROUGHPUT OF MINER • MISSION DURATION and MASS RETURNED • DELTA-V for RETURN into Earth Orbit • POWER & PROPULSION SYSTEM parameters • VALUE PER KG DELIVERED TO LEOGEO or HEO

  27. Mechanical miner – ‘SpaceMole’? Must solve these basic tasks: • Anchoring (onto a micro-gravity body!) • Comminution • Ground control (even in micro-g) • Containment of product cuttings • Handling of cuttings thru Processor • Separation and storage of product(s)

  28. Comparisons with Terrestrial Mining Best comparisons are with • Remote, high grade, very high value, high margin, small throughput, exotic product operations…. see following slides:

  29. Terrestrial Remote High Value Mines • Klondike Goldrush, 1898 • Ekati diamond mine, Canada (access by ice road, 10 weeks per year) • Namibia offshore diamond dredging (Skeleton Coast) • Artisanal goldminers in Brazil, PNG and elsewhere • Bulolo goldfields, New Guinea, 1930’s (more airfreight than entire rest of world total, to build 8 x 1500 tonne dredges) • Shinkolobwe, Belgian Congo, 1920’s; and Port Radium, Canada, 1930’s (Radium was $100,000 / gram!) • Nautilus Deep Sea Massive Sulphides (Manus Basin, PNG)

  30. BHP-Billiton Ekati Diamond mine, NWT, Canada: 10 weeks ice road access per year….

  31. At the height of the Mt Kare gold rush in the highlands of Papua New Guinea, these villagers would flag down passing helicopter taxis to fly them to the bank…

  32. Andamooka opal fields, South Australia

  33. Bulolo Goldfields, 1930’s Read ‘Not a Poor Man’s Field’ by Waterhouse, Halstead Press

  34. Notes from Terrestrial Mining (2) There is avast range of orebody types & geometries, thus vast range of mining methods: • Open pit (shallow or deep, soft or hard rock, strip mine, dredge, …) • Underground (room & pillar, Long-Hole Open Stoping, cut & fill, block cave)… • In Situ Leach... Must understand your orebody and choose correct (and robust) method or risk project failure

  35. Ore grade is measured in… • Gold: grams per tonne (ppm) • Uranium: kg per tonne (or lb/ton) • Pb, Ni, Cu: % But in reality, mining engineers talk about ore grade in terms of -- $ per tonne So should we… for example, see next:

  36. Haul truck, Prominent Hill Copper Mine, 200 km NW of Woomera, South Australia: Cu grade = 2%; Au = 0.2 g/t Value of ore at recent Cu & Au price = $170 / tonne

  37. PGMs or Water or Ni-Fe? • Assume we have a target asteroid which contains 50 ppm PGMs and 10% H2O and 10% Ni-Fe: • PGMs value (on Earth)  $4,000 / tonne of regolith ore • H2O or Ni-Fe value (in orbit) $1 x 106 / tonne of ore (replacing $10,000 / kg cost if launched from Earth) Which product is more important?? Is this “ore” ? • Only if we can mine, process, transport, and sell the product, AT A PROFIT…

  38. Comparisons with Terrestrial (2) Seabed Mining of Massive Metal Sulphides in Volcanic Black Smoker Vent chimneys Some interesting parallels with asteroid mining--- - very high value ore, multiple products - small multiple deposits, mineable sequentially - low mass throughput (down by factor of 50-100) - mobile, teleoperated equipt - ‘terra nullius’ if outside national EEZ - no landowner ident & compensation issues!!

  39. Seabed Massive Sulphides … Metal grades can be +50% Exploring for Seabed Massive Sulphides offshore PNG (in active Black Smokers and extinct Black Smoker chimney strewnfields on seamounts)

  40. Why Seabed Massive Sulphides -- • Lower discovery costs: exposed, easy sampling • Low cost / easy trial mining • Shorter project lead time: easy ore access (no shaft, decline, or open pit prestrip) • No landowner compensation costs • Cheaper beneficiation, easier metallurgy, less materials handling: all due to ultra-high grade • No ‘pit to port’ infrastructure: major Capex item in terrestrial mining

  41. Seabed Massive Sulphides (2) • Cheaper plant: build in shipyard, sail to site • FPSO vessel can even be leased: removes single biggest Capex item! • Single plant can access several deposits sequentially, hence - • Lower feasibility hurdle: access to multiple deposits plus plant mobility means not necessary to confirm full ‘mine life’ reserves • Much less waste & enviro impact due to low mass throughput: thanks to ultra-high grades (adapted from presentation by Julian Malnic, Nautilus CEO, 2000)

  42. Note the amazing parallels of Deep Sea Massive Sulphides Mining with our hypothesized NEA Mining….

  43. Notes from terrestrial processing • From simple (gravity, magnetic, electrostatic separation) to highly complex, including • Pyrometallurgical (smelters, fire refining etc) • Hydrometallurgical (leaching, solvent extraction) • Electrolytic • Vapour separation!! (Mond nickel process)

  44. Terrestrial Processing (2) Metallurgical flowsheet: how to separate the product(s) from the waste - This is more complex and difficult if trying to extract multiple products: Solid / solid separation : density or electrostatic Solid / liquid sep’n: by dissolution / precip’n / filtering Solid / vapour sep’n: volatilization, eg Mond process (nb: vapour processes are limited by low massflows) Liquid / liquid: smelting, melt electrolysis etc -- Must choose correctly or you may lose your project

  45. Comparisons with Terrestrial (3) • NEAs are prolific, with subset having low Δv • Many are very prospective for H2O, Ni-Fe • Very valuable ore ($1x106 / tonne) • Easy extraction (??) • Target return parcels  500 - 5,000 tonnes Asteroid resource return missions will be analogous to short campaign or Trial Mining of very high value ores

  46. So what will an Asteroid Miner look like?? – I don’t know, but: • Design depends on target orebody ‘model’ • Small, highly integrated, digger (plus processor?) • Assume solar powered (nuclear is out, politically) • Assume main products are raw silicate, H2O, and / or Ni-Fe delivered into LEO, GEO, or HEEO • We await only development of market in orbit…

  47. Ultimately, Remote Miners will process regolith In-Situ to produce propellant for return, But – and this is very recent finding, from our own studies, & validated by the Keck Workshop: For objects smaller than (say) 7 metres diameter, and in low-eccentricity earth-grazing orbits, it now appears to be possible to return the entire body to High Elliptical Earth Orbit (HEEO), using Earth-origin propellant and high Isp electric propulsion (eg Hall Thrusters)…. This technology is no more demanding than a communications satellite….

  48. What we are up to, near term: Papers for ISDC and AIAA; Further development of concept(s):

More Related