1 / 13

Significant Figures

Significant Figures. Significant Figures. Engineers often are doing calculations with numbers based on measurements. Depending on the technique used, the precision of the measurements can vary greatly.

yardley-kim
Download Presentation

Significant Figures

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Significant Figures

  2. Significant Figures • Engineers often are doing calculations with numbers based on measurements. Depending on the technique used, the precision of the measurements can vary greatly. • It is very important that engineers properly signify the precision of the numbers being used and calculated. Significant figures is the method used for this purpose.

  3. Accuracy vs. Precision Accuracyrefers to how closely a measured value agrees with the true value Example A scale to increments of 10 lbs is not very precise, but, if it is well calibrated, it is accurate. Courtesy: http://www.chem.tamu.edu/class/fyp/mathrev/mr-sigfg.html

  4. Precision vs. Accuracy Precision refers to the level of resolution of the number. Example A scale to increments of tenths of a gram has good precision, however, if it is not well calibrated, it would not be accurate. A scale measures to 0.1 lbs is more precise than one that measures to 1 lbs. Courtesy: College Physics by A. Giambattista, B. Richardson and R. Richardson

  5. Significant Figures and Precision In engineering and science, a number representing a measurement must indicate the precision to which the measured value is known. The precision of a device is limited by the finest division on the scale. Example A meterstick, with millimeter divisions as the smallest divisions, can measure a length to a precise number of millimeters and estimate a fraction of a millimeter between two divisions. Courtesy: College Physics by A. Giambattista, B. Richardson and R. Richardson

  6. Significant Figures The precisionof a quantity is specified by the correct number of significant figures. Significant figures - All the digits that are measured or known accurately + the one estimated digit Example d is to thenearestkilometer  2 significant figures d is to the nearesttenth of a kilometer  3 significant figures More significant figures mean greater precision!!! Courtesy: College Physics by A. Giambattista, B. Richardson and R. Richardson

  7. Rules for Identifying Significant Figures

  8. Exact Numbers Exact numbers: Numbers known with complete certainty. Exact numbers are often found as conversion factors or as counts of objects. Exact numbers have an infinite number of significant figures. Example Conversion factors : 1 foot = 12 inches Counts of objects: 23 students in a class Courtesy: http://www.chem.sc.edu/faculty/morgan/resources/sigfigs/sigfigs4.html

  9. Addition and Subtraction of Significant Figures When quantities are added or subtracted, the number of decimal places (not significant figures)in the answer should be the same as the least number of decimal places in any of the numbers being added or subtracted. Example 50.67 J (2 decimal places - 4 significant fig.) 0.1 J (1 decimal place - 1 significant fig.) + 0.9378 J (4 decimal places - 4 significant fig.) 51.7078 J (4 decimal places- 6 significant fig.) Result: 51.7 J ROUNDING !!! (1 decimal place - 3 sig. fig.) Courtesy: http://www.physics.uoguelph.ca/tutorials/sig_fig/SIG_dig.htm

  10. Multiplication, Division, etc., of Significant Figures In a calculation involving multiplication, division, trigonometric functions, etc., the number of significant digits in the answer should be equal to the least number of significant digits in any one of the numbers being multiplied, divided etc. Example 0.097 m-1 (3 decimal places- 2 significant fig.) X 4.73 m (2 decimal places - 3 significant fig. ) 0.45881 (5 decimal places - 5 significant fig.) Result: 0.46 ROUNDING !!! (2 decimal place- 2 sig. fig.) Courtesy: http://www.physics.uoguelph.ca/tutorials/sig_fig/SIG_dig.htm

  11. Combination of Operations In a long calculation involving combination of operations, carry as many digits as possible through the entire set of calculations and then round the final result appropriately. DO NOT ROUND THE INTERMEDIATE RESULTS. Example (5.01 / 1.235) + 3.000 + (6.35 / 4.0)= 4.05668... + 3.000 + 1.5875=8.64418... The first division should result in 3 significant figures. The last division should result in 2 significant figures. In addition of three numbers, the answer should result in 1 decimal place. Result: 8.6 ROUNDING !!! (1 decimal place - 2 sig. fig.) Courtesy: http://www.physics.uoguelph.ca/tutorials/sig_fig/SIG_dig.htm

  12. Combination of Operations IF YOU ROUND THE INTERMEDIATE RESULTS: Example (5.01 / 1.235) + 3.000 + (6.35 / 4.0)= 4.06 + 3.000 + 1.6=8.66 If first and last division arerounded individually before obtaining the final answer, the result becomes 8.7 which is incorrect. Courtesy:http://www.chem.sc.edu/faculty/morgan/resources/sigfigs/sigfigs4.html

  13. Sample Problems PLEASE CHECK THE FOLLOWING WEBSITES TO PRACTISE: • http://www.chem.sc.edu/faculty/morgan/resources/sigfigs/sigfigs8.html • http://science.widener.edu/svb/tutorial/sigfigures.html • http://www.lon-capa.org/~mmp/applist/sigfig/sig.htm

More Related