baxter wu n.
Download
Skip this Video
Loading SlideShow in 5 Seconds..
Μελέτη των αλλαγών φάσης στο πρότυπο Baxter- Wu PowerPoint Presentation
Download Presentation
Μελέτη των αλλαγών φάσης στο πρότυπο Baxter- Wu

Loading in 2 Seconds...

play fullscreen
1 / 34

Μελέτη των αλλαγών φάσης στο πρότυπο Baxter- Wu - PowerPoint PPT Presentation


  • 120 Views
  • Uploaded on

Μελέτη των αλλαγών φάσης στο πρότυπο Baxter- Wu. Εφαρμογές προσομοιώσεων Monte- Carlo για τη μελέτη της κρίσιμης συμπεριφοράς. I . Ν. Βελονάκης 1 *, Σ . Σ . Μαρτίνος 1 1 Πανεπιστήμιο Αθηνών, Τμήμα Φυσικής, Τομέας Φυσικής Στερεάς Κατάστασης , GR 15784 Άνω Ιλίσια , Ελλάδα

loader
I am the owner, or an agent authorized to act on behalf of the owner, of the copyrighted work described.
capcha
Download Presentation

Μελέτη των αλλαγών φάσης στο πρότυπο Baxter- Wu


An Image/Link below is provided (as is) to download presentation

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.


- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -
Presentation Transcript
baxter wu

Μελέτη των αλλαγών φάσης στο πρότυπο Baxter- Wu

Εφαρμογές προσομοιώσεων Monte- Carlo για τη μελέτη της κρίσιμης συμπεριφοράς

I. Ν. Βελονάκης1*, Σ. Σ. Μαρτίνος1

1Πανεπιστήμιο Αθηνών, Τμήμα Φυσικής, Τομέας Φυσικής Στερεάς Κατάστασης, GR 15784 Άνω Ιλίσια, Ελλάδα

*ivelonak@phys.uoa.gr

slide2
Περίληψη

Αποδεικνύουμε ότι για Η < 0 το πρότυπο Baxter- Wu παρουσιάζει κρίσιμη αλλαγή φάσης και υπολογίζονται οι εκθέτες α, β, γ. Επίσης εξετάζεται η συμπεριφορά τους καθώς προσεγγίζουμε το κρίσιμο σημείο με Η = 0. Επιπλέον, μελετάται η αντίστοιχη συμπεριφορά των Binder Cumulants.

baxter wu1
Πρότυπο Baxter- Wu

Συνάρτηση Hamilton:

Δισδιάστατο πρότυπο που έχει μόνο τριπλές spin αλληλεπιδράσεις.

Για μαγνητικό πεδίο H = 0 έχει τέσσερις θεμελιώδεις καταστάσεις (E = −2JN), μια σιδηρομαγνητική (M = +NμB) και τρεις σιδηριμαγνητικές (M = −3 −1 NμB).

Για μαγνητικό πεδίο H= Hc(T) < 0 έχει τέσσερις θεμελιώδεις καταστάσεις (E = −2JN − 3 −1μBNΗc(T)), τρεις σιδηριμαγνητικές (M = −3 −1 NμB) και μια σιδηρομαγνητική (M = − NμB).

Για H = 0 και T = Tc, όπου kBTc= 2,269J, παρατηρείται κρίσιμη αλλαγή φάσης από σιδηριμαγνητισμό σε παραμαγνητισμό.

Για H = 0 και T < Tc, όπου kBTc= 2,269J, παρατηρείται αλλαγή φάσης 1ου είδους από σιδηριμαγνητισμό σε παραμαγνητισμό.

Για H= Hc(T) < 0 παρατηρείται κρίσιμη αλλαγή φάσης από σιδηριμαγνητισμό σε παραμαγνητισμό.

baxter wu2
Πρότυπο Baxter- Wu

Φυσική σημασία- εφαρμογές (1):

  • Απλουστευμένο δισδιάστατο πρότυπο για την περιγραφή της κρίσιμης συμπεριφοράς, με κύριο πλεονέκτημα τη δυνατότητα ακριβούς επίλυσής του ως προς κάποια χαρακτηριστικά του μεγέθη απουσία εξωτερικού μαγνητικού πεδίου. Η συμπεριφορά του στην περίπτωση αυτή ανήκει στην κλάση παγκοσμιότητας των μοντέλων Potts δυο διαστάσεων και τεσσάρων καταστάσεων, χωρίς όμως λογαριθμικές διορθώσεις κατά τον υπολογισμό κρισίμων εκθετών.
  • Απλουστευμένο πρότυπο σιδηριμαγνητισμού, το οποίο θα μπορούσε να περιγράψει μεταβάσεις φάσης σιδηριμαγνητών με ισχυρά ανισότροπη συμπεριφορά, πλην όμως δεν έχει εντοπιστεί ως τώρα κάποιο σχετικό φυσικό μαγνητικό υλικό ή κράμα μετάλλων.
  • Με τριπλές αλληλεπιδράσεις συνενώνονται ως γνωστόν τα quarxγια να σχηματίσουν αδρόνια,πλην όμως εδώ ο παράγοντας διάσταση παίζει καθοριστικό ρόλο, με συνέπεια ούτε αυτά τα συστήματα να ανήκουν στη σχετική κλάση παγκοσμιότητας.
baxter wu3
Πρότυπο Baxter- Wu

Μέχρι στιγμής έχουν βρεθεί τουλάχιστον τρία δισδιάστατα φυσικά συστήματα των οποίων η κρίσιμη συμπεριφορά θα μπορούσε να περιγραφεί με τη βοήθεια του προτύπου αυτού. Πρόκειται για τη χημική προσρόφηση O (p- 2×2) από Ni (111) (Roelofsetal, 1981), O από Ru (0001) (PiercyandPfnür, 1987) και H (2H- 2×2) από Ni (111) (Schwengeretal, 1994), πλην όμως η συστηματική πειραματική μελέτη τέτοιων συστημάτων παρουσιάζει σοβαρές δυσκολίες, με αποτέλεσμα λίγες σχετικές εργασίες να έχουν δημοσιευτεί. Σημειώνουμε μάλιστα ότι σχετικές πειραματικές μελέτες παρουσία «μαγνητικού πεδίου» (χημικού δυναμικού) δε φαίνεται να έχουν γίνει ως τώρα. Η συνάρτηση Hamilton του συστήματος στην τελευταία περίπτωση αντικαθίσταται από εκείνη για πλέγμα- αέριο (lattice- gas)

Φυσική σημασία- εφαρμογές (2):

όπου (ChinandLandau, 1987) εtη ενέργεια των τριπλώναλληλεπιδράσεων, εb η ενέργεια σύνδεσης των ετεροατόμων στην προσρόφηση και μ το χημικό δυναμικό, ενώ

single spin flip metropolis heat bath
Πλεονεκτήματα

Απλότητα- λίγος χρόνος για το κάθε βήμα

Ευκολία εφαρμογής σχεδόν σε οποιοδήποτε μοντέλο

Ικανοποιητικά αποτελέσματα σε μεγάλη ποικιλία συνθηκών

Σχετικά εύκολη παραλληλοποίηση.

Μειονεκτήματα

Απαιτείται πολύ μεγάλος αριθμός βημάτων στην κρίσιμη περιοχή για μια ικανοποιητική προσομοίωση λόγω του φαινομένου της κρίσιμης επιβράδυνσης (critical slowing-down)

Αλγόριθμοι single- spin flip (Metropolis, Heat- Bath)
cluster flip wolff swendsen wang niedermayer
Πλεονεκτήματα

Ικανοποιητική προσομοίωση στην κρίσιμη περιοχή για μικρό αριθμό βημάτων- σχεδόν εξαλείφεται το φαινόμενο της κρίσιμης επιβράδυνσης (critical slowing-down)

Μειονεκτήματα

Αυξημένη πολυπλοκότητα- αρκετός υπολογιστικός χρόνος για κάθε βήμα

Δυσκολίες στην εφαρμογή τους σε σχετικά πολύπλοκα μοντέλα

Πρακτικά κατάλληλοι μόνο για την κρίσιμη περιοχή.

Παραλληλοποίηση όχι πάντοτε εύκολη ή εφικτή.

Αλγόριθμοι cluster- flip (Wolff, Swendsen- Wang, Niedermayer)
entropic sampling wang landau
Πλεονεκτήματα

Απλότητα- λίγος χρόνος για το κάθε βήμα

Ευκολία εφαρμογής σχεδόν σε οποιοδήποτε μοντέλο

Η κατανομή της εντροπίας S = S(M,E) που προκύπτει μπορεί να χρησιμοποιηθεί σε μεγάλη περιοχή θερμοκρασιών και μαγνητικών πεδίων.

Δεν απαιτούν μεγάλους υπολογιστικούς χρόνους και πόρους- επιτρέπουν την αξιοποίηση παλαιότερων υπολογιστικών συστημάτων.

Η παραλληλοποίησή τους είναι τετριμμένο πρόβλημα.

Μειονεκτήματα

Στις περιοχές κρίσιμης αλλαγής φάσης η ακρίβεια των αποτελεσμάτων τους είναι μικρότερη σε σχέση με τους αλγορίθμους cluster.

Σε περίπτωση που επιλέξουμε να εργαστούμε σε διαφορετικούς υπόχωρους του φασικού χώρου η συνένωση των αποτελεσμάτων μπορεί να προκαλέσει προβλήματα.

Αλγόριθμοι Entropic Sampling (Wang- Landau)
finite size scaling theory
Θεωρία Κλιμάκωσης Πεπερασμένου Μεγέθους (Finite- Size Scaling Theory)
  • Βασίζεται στη Φαινομενολογική Θεωρία Επανακανικοποίησης (Phenomenological Renormalization Theory).
  • Με τη βοήθεια αυτής της θεωρίας μπορούμε να προβλέψουμε τη συμπεριφορά του πραγματικού (άπειρου) συστήματος από τη συμπεριφορά πεπερασμένων συστημάτων.
finite size scaling theory1
Θεωρία Κλιμάκωσης Πεπερασμένου Μεγέθους (Finite- Size Scaling Theory)
  • Για τη θερμοχωρητικότητα ανά πλεγματικό σημείο υπό σταθερό εξωτερικό μαγνητικό πεδίο cHπροβλέπεται
  • Για την κρίσιμη θερμοκρασία και το κρίσιμο μαγνητικό πεδίο Tcκαι Hcαντίστοιχα προβλέπεται

Για την ισόθερμη μαγνητική επιδεκτικότηταανά πλεγματικό σημείο χT προβλέπεται

  • Εδώ α, β, γ είναι οι κρίσιμοι εκθέτες της θερμοχωρητικότητας, της παραμέτρου τάξης της ισόθερμης επιδεκτικότητας αντίστοιχα και H είναι το εξωτερικό μαγνητικό πεδίο. Σημειώνουμε ότι οι ανωτέρω σχέσεις ισχύουν μόνο αν οι αντίστοιχες φυσικές ποσότητες περιγράφονται στα κρίσιμα σημεία με ιδιομορφία απλού νόμου δύναμης και όχι με λογαριθμική ιδιομορφία.
c f l 48 h 3 5000

Διάγραμμα χT = f(T), L = 48, H = −3,5000

Διάγραμμα CΗ = f(Τ), L= 48, H = −3,5000

Διάγραμμα CΗ = f(H), L= 48, T = 2,329JkB-1

Διάγραμμα χT= f(T), L = 48, H = −2,5000

slide12
Διαγράμματα υπολογισμού κρίσιμων εκθετών

Διάγραμμα logCmax = f(logL) για H = − 3,500

Διάγραμμα θερμοκρασίας μέγιστης θερμοχωρητικότητας Tc* = f(L)για Η = −3,500

slide13
Κρίσιμα σημεία και κρίσιμοι εκθέτες α και ν για εξωτερικό μαγνητικό πεδίο Η ≤ 0.
slide14

Κρίσιμα σημεία και κρίσιμοι εκθέτες γ και ν για εξωτερικό μαγνητικό πεδίο Η ≤ 0 (οι τιμές που λείπουν δεν ήταν εφικτό να υπολογιστούν για τα διαθέσιμα πλέγματα).

slide15
Κρίσιμα σημεία και κρίσιμοι εκθέτες α και (β+γ) για εξωτερικό μαγνητικό πεδίο Η ≤ 0
slide16
Κρίσιμα σημεία και κρίσιμοι εκθέτες γ και β για εξωτερικό μαγνητικό πεδίο Η ≤ 0

Διάγραμμα φάσεων του προτύπου Baxter- Wu

4 v l0
Σωρευτής 4ης τάξης για την Ενέργεια VL0

Για αλλαγή φάσης 1ου είδους αποδεικνύεται (Binder et al, 1985)ότι

Για απουσία αλλαγής φάσης αποδεικνύεται ότι

v l 0
Ο σωρευτήςVL0 στο κρίσιμο σημείο

Για κρίσιμη αλλαγή φάσης προτείνεται (Martinos et al, 2005) η ακόλουθη σχέση κλιμάκωσης, χωρίς όμως να έχει δοθεί επαρκής απόδειξη

Η παραπάνω σχέση δηλώνει ότι δεν είναι δυνατή στο θερμοδυναμικό όριο η διάκριση κρίσιμων αλλαγών φάσης από την ανυπαρξία αλλαγής φάσης με τη βοήθεια του σωρευτή της ενέργειας.

v l 01
Η συνάρτηση πυκνότητας πιθανότητας VL0 στο κρίσιμο σημείο
  • Για την κρίσιμη αλλαγή φάσης, βασισμένοι στα αποτελέσματα προσομοιώσεων Monte- Carlo, προτείνουμε την ακόλουθη σχέση κλιμάκωσης για την πυκνότηταπιθανότητας ενέργειας (ανά spin),
slide20
Υπολογισμοί από τη σχέση κλιμάκωσης της πυκνότητας πιθανότητας της ενέργειας
slide21
Συνέπειες της σχέσης κλιμάκωσης της πυκνότητας πιθανότητας της ενέργειας
slide22
Σημαντική παρατήρηση:

Συχνά συμβαίνειΕav ≠Ε0αλλά Εav ≈Ε0. Τότε

Η σχέση αυτή επιβεβαιώνεται με εκτενείς προσομοιώσεις Monte- Carlo, ωστόσο η αξιοποίηση του παρόντος σωρευτή στη διάκριση αλλαγών φάσης στο θερμοδυναμικό όριο παραμένει προβληματική.

slide23
Υπολογισμός κρισίμων εκθετών από τη σχέση κλιμάκωσης του σωρευτή VL0
4 v l
Προτεινόμενος ανηγμένος σωρευτής 4ης τάξης για την Ενέργεια VL
slide25
Υπολογισμός του σωρευτή VL
  • Απουσία αλλαγής φάσης
  • Αλλαγή φάσης 1ου είδους
  • Κρίσιμη αλλαγή φάσης
v l0 v l baxter wu
Μελέτη κλιμάκωσης των σωρευτών VL0,VLστα κρίσιμα σημεία του προτύπου Baxter- Wu
v l baxter wu
Μελέτηθερμοκρασιακής κλιμάκωσης του σωρευτή VL στο πρότυπο Baxter- Wu
slide29
Συμπεράσματα (1)
  • Τα αποτελέσματά μας για το πρότυπο Baxter- Wu επιβεβαιώνουν τη συμπεριφορά του στο κρίσιμο σημείο (0,TTCP) απουσία εξωτερικού μαγνητικού πεδίου.
  • Για αρνητικό εξωτερικό μαγνητικό πεδίο το πρότυπο Baxter- Wu παρουσιάζει αλλαγή φάσης ανώτερης τάξης κατά μήκος της κρίσιμης γραμμής Hc = Hc(T), η οποία όμως τερματίζεται στο ανωτέρω κρίσιμο σημείο (0,TTCP). Το σημείο αυτό είναι ταυτόχρονα τερματικό κρίσιμο σημείο γραμμής αλλαγής φάσης 1ου είδους και τερματικό γραμμής αλλαγής φάσης δεύτερου είδους (Tsai, Wangand Landau, 2006, 2007, 2008).
  • Τα κρίσιμα σημεία της καμπύλης Hc = Hc(T) εκτός του (0,TTCP) ανήκουν σε μια νέα κλάση παγκοσμιότητας, με κρίσιμους εκθέτες ίσους κατά προσέγγιση ν ≈ 1,00 ± 0,02, β ≈ 0,75 + 0,05, γ ≈ 0,40 ± 0,05, α ≈ 0,50 ± 0,01. Επιβάλλεται επανάληψη των υπολογισμών των κρίσιμων εκθετών για H<0, πιθανόν με τη χρήση κατάλληλων cluster αλγορίθμωνκαι Monte- Carlo Renormalization, αφού οι τιμές που βρήκαμε δεν επιβεβαιώνουν τις γνωστές σχέσεις κλιμάκωσης.
slide30
Συμπεράσματα (2)
  • Το κρίσιμο σημείο (0,TTCP) εμφανίζεται να παρουσιάζει συμπεριφορά απωστικού κρίσιμου σημείου ενώ το σημείο (−6, 0) συμπεριφορά ελκτικού κρίσιμου σημείου, με τους εκθέτες του να κυριαρχούν κατά μήκος της φασικής γραμμής.
  • Η πυκνότητα πιθανότητας ενέργειας ανά spin στο κρίσιμο σημείο υπακούει σε μια σχέση κλιμάκωσης, αν και η ακριβής συναρτησιακή σχέση για το οικουμενικό της τμήμα παραμένει άγνωστη.
  • Ο ανηγμένος σωρευτής για την ενέργεια που προτείνουμε εμφανίζει καλύτερη συμπεριφορά σε ότι αφορά τη διάκριση των αλλαγών φάσης σε σχέση με εκείνον που αρχικά προτάθηκε από τους Challa, Landau, Binder.
  • Πολύ ικανοποιητικά αποτελέσματα, προκύπτουν αν αντί για όλες τις ενέργειες περιοριστούμε στον υπόχωρο−2N ≤ E ≤ −(2/3)N, όπου N ο αριθμός των spin του συστήματος. Όμως ο υπόχωρος αυτός πρέπει να διευρυνθεί όταν H ≥ 0.
slide31
Περεταίρω στόχοι της παρούσας επιστημονικής έρευνας:
  • Λεπτομερέστερη μελέτη της αλλαγής φάσης του μοντέλου Baxter- Wu για H < 0 και υπολογισμός κρίσιμων εκθετών(χρήση αλγορίθμων Cluster, Αλγορίθμων Multicanonical- Simulated Tempering και Monte- Carlo Renormalization).
  • Μελέτη των σωρευτών του Binder για την κατανομή μαγνήτισης (Binder Cumulants) στο πρότυπο Baxter- Wu για Η < 0. Αναζήτηση μαγνητικής παραμέτρου τάξης για αυτήν την αλλαγή φάσης
  • Συγκριτική μελέτη- αξιολόγηση αλγορίθμων για την προσομοίωση του μοντέλου Baxter- Wu σε διάφορες συνθήκες.
slide32
Βιβλιογραφία (1)
  • Alcaraz, F. C., Xavier, J. C., J. Phys. A 30 (1997) L203
  • Alcaraz, F. C., Xavier, J. C., J. Phys. A 32 (1999) 2041
  • Barber, M. N., in: Domb, C., Lebowitz, J.L. (Eds.), Phase Transitions and Critical Phenomena, Academic Press, New York, 1983
  • Baxter, R. J., Enting, I. G., J. Phys. A 9 (1976) 149
  • Baxter, R. J., Exactly Solved Models in Statistical Mechanics, Academic Press, Tunbridge Wells, U.K. (1989), p. 314
  • Baxter, R. J., Sykes, M. F., Watts, M. G., J. Phys. A 8 (1975) 245
  • Baxter, R. J., Wu, F. Y., Phys. Rev. Lett. 31 (1973) 1294
  • Binder, K., Landau, D. P. A Guide to Monte Carlo Simulations In Statistical Physics, University Press, Cambridge, 2000
  • Binder, K., Landau, D. P., Phys. Rev. B 30 (1984) 1477
  • Blöte, H. W. J., Heringa, J. R., Luijten, E., Comp. Phys. Com. 147 (2002) 58
  • Challa, M. S., Landau, D. P., Binder, K., Phys. Rev. B 34 (1986) 1841
  • Chin, K. K., Landau, D. P., Phys. Rev. B 36 (1987) 275
  • Deng, Y., Guo, W., Heringa, J. R., Blöte, H.W. J. andNienhuis, B., Nucl. Phys. B 827 (2010) [FS] 406
  • Dóczi- Réger, J., Hemmer, P.C., Physica A 108 (1981) 531- 545
  • Fisher, M. E., Berker, A. N., Phys. Rev. B 26 (1982) 2507
  • Fisher, M. E., in: M.S. Green (ed.), Critical Phenomena, Academic Press, New York, 1971
  • Froyen, S., Sudbo, A. A. S., Hemmer, P. C., Physica A 85 (1976) 399
  • Kinzel, W., Schick, M., Phys. Rev. B 23 (1981) 3435
  • Lee, J., Phys. Rev. Lett. 71(1993) 211- 214
  • Malakis, A., Fytas, N. G., Phys. Rev. E. 73 (2006) 016109
  • Malakis, A., Fytas, N. G., Phys. Rev. E. 73 (2006) 056114
slide33
Βιβλιογραφία (2)
  • Malakis, A., J. Stat. Phys. 27 (1982) 1
  • Malakis, A., Martinos, S. S., Hadjiagapiou, I., Fytas, N. G., Kalozoumis, P., Phys. Rev. E. 72 (2004) 066120
  • Malakis, A., Peratzakis, A., Fytas, N. G., Phys. Rev. E. 70 (2004) 066128
  • Martinos, S. S., Malakis, A, Hadjiagapiou, I., Physica A 331 (2004) 182- 188
  • Martinos, S. S., Malakis, A, Hadjiagapiou, I., Physica A 352 (2005) 447-458
  • Martinos, S. S., Malakis, A, Hadjiagapiou, I., Physica A, 355 (2005) 393- 407
  • Newman, M. E. J., Barkema, G. T., Monte Carlo Methods in Statistical Physics, Clarendon Press, Oxford (2001)
  • Novotny, M. A., Evertz, H. G. in: D.P. Landau, K.K. Mon, H.-B.Schüttler (Eds.), Computer Simulation Studies in Condensed-matter Physics, Vol. VI, Springer, Berlin, 1993, p. 188.
  • Novotny, M. A., Landau, D. P., Phys. Rev B 24 (1981) 1468
  • Piercy, P., Pfnür, H., Phys. Rev. Lett. 59 (1987) 1124- 1127
  • Privman, V. (Ed.), Finite- Size Scaling and Numerical Simulations of Statistical Systems, World Scientific, Singapore, 1990
  • Roelofs, L. D., Kortan, A. R., Einstein, T. L., Park, R. L., Phys. Rev. Lett. 46 (1981) 1465- 1468
  • Santos, M., Figueiredo, W., Phys. Rev. E 63 (2001) 042101
  • Schwenger, L., Budde, K., Voges, C., Pfnür, H., Phys. Rev. Lett. 73 (1994) 296- 299
  • Stanley, H. E., Introduction to Phase Transitions and Critical Phenomena, Oxford University Press, 1967
  • Stanley, H. E., Luke, L. L., Phys. Rev. B 10 (1974) 2958
  • Tsai, S.-H., Wang, F., Landau, D. P., Braz. J. Phys. 36 (2006) 635
  • Tsai, S.-H., Wang, F., Landau, D. P., Braz. J. Phys. 38 (2008) 635
  • Tsai, S.-H., Wang, F., Landau, D. P., Phys. Rev. E 75 (2007) 061108
  • Velonakis, I. N., Martinos, S. S., Physica A 390 (2011) 24- 30
  • Velonakis, I. N., Martinos, S. S.,Physica A 390 (2011) 3369- 3384
  • Wang, F., Landau, D. P., Phys. Rev. E 64 (2001) 056101
  • Wood, D. W., Griffiths, H. P., J. Phys. C 5 (1972) 253
  • Yeomans, J. M., Statistical Mechanics of Phase Transitions, Clarendon Press, Oxford (1992)
slide34
Ευχαριστίεςπρος
  • το Ίδρυμα Κρατικών Υποτροφιών (Ι. Κ. Υ.) για την οικονομική του στήριξη κατά την εκπόνηση της παρούσας Διατριβής
  • τους Αναπληρωτές Καθηγητές του τμήματος Φυσικής του Ε.Κ.Π.Α. κυρίους Μαρτίνο Σωτήριο, Μαλάκη Αναστάσιο και Χαζηαγαπίου Ιωάννη
  • τον Καθηγητή Φυσικής κύριο Mark Novotny για το ενδιαφέρον και τις συμβουλές του
  • τους Καθηγητές του τμήματος Φυσικής Ε.Κ.Π.Α. κυρίους Μανουσάκη Ευστράτιο και Στεφάνου Νικόλαο για την ευγενική παραχώρηση υπολογιστικών συστημάτων
  • τον Επίκουρο Καθηγητή του Ε.Κ.Π.Α. κύριο Συσκάκη Εμμανουήλ
  • τον υποψήφιο διδάκτορα του τμήματος Φυσικής του Ε.Κ.Π.Α. κύριο Γεωργαλά Κωνσταντίνο
  • τον ερευνητή Δρα Φυσικής κύριο Γεώργιο Γκαντζούνη
  • τον κύριο Γεωργιάδη Ιωάννη, διαχειριστή υπολογιστικών συστημάτων στο Υπολογιστικό κέντρο του Ε.Κ.Π.Α.
  • Η εργασία αυτή υποστηρίχθηκε εν μέρει οικονομικά από τον Ειδικό Λογαριασμό Κονδυλίων και Έρευνας του Πανεπιστημίου Αθηνών υπό τον κωδικό 70/40/7677.