1 / 83

Enantioselective Protonation: Fundamental Insights and New Concepts

Enantioselective Protonation: Fundamental Insights and New Concepts. A presentation by Guillaume Pelletier Literature meeting October 12 th 2011. Enantioselective Protonnation : An Extremely Simple Transformation!(?).

weylin
Download Presentation

Enantioselective Protonation: Fundamental Insights and New Concepts

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Enantioselective Protonation: Fundamental Insights and New Concepts A presentation by Guillaume Pelletier Literature meeting October 12th 2011

  2. Enantioselective Protonnation : An Extremely Simple Transformation!(?) • Enolates are important as syntheticintermediates: regio and stereoselectivegenerationwith the desiredcounterion, increasedknowledge of their structure and reactivity • Enantioselectiveprotonnation via enoltautomerisation:requireonlycatalyticamounts of chiral reagent. • Protonnation of a chiral enolate/ligand complex

  3. What is the Important Facts to Know Before Exploring «AP» of Enolates • Enantioselective protonation processes are necessarily kinetically controlled reactions • Match the pKaof the proton donnor and the product • Be concerned about the stereochemistry of the proton acceptor : the ability to generate a stereodefined proton acceptor is critical (or not) in order to have good enantioselectivity • Detailed mechanistic explanations are rare : mixture of many mechanisms

  4. Presentation Outline • Lucette Duhamel and J.-C. Plaquevent’s Asymmetric Protonation of Benzylidene Glycinates (1978) • Charles Fehr’s Synthesis of α- and γ-Damascone (1988) • Hisashi Yamamoto’s Catalytic Asymmetric Protonation of Silyl Enol Ether with LBA (1994) • Recent Contributions (Levacher, Genet, Fu, Stoltz…) (2005+) Fehr, C. Angew. Chem., Int. Ed. 1996, 35, 2566-2587. Eames, J.; Weerasooriya, N. Tetrahedron : Asymmetry 2001, 12, 1-24. Duhamel, L.; Duhamel, P.; Plaquevent, J.-C. Tetrahedron : Asymmetry 2004, 15, 3653-3691. Mohr, J. T.; Hong, A. Y.; Stoltz, B. M. Nature Chem. 2009, 1, 359-369.

  5. First « Synthetically Useful » Example of AP with Substituted Benzylidene Glycinates Duhamel, L.; Plaquevent, J. C. J. Am. Chem. Soc. 1978, 100, 7415-7416. Duhamel, L.; Plaquevent, J. C. Bull. Soc. Chim. Fr. 1982, II-75-83. Duhamel, L. et al. Tetrahedron 1988, 44, 5495-5506.

  6. Influence of the Chiral Acid Duhamel, L.; Plaquevent, J. C. J. Am. Chem. Soc. 1978, 100, 7415-7416. Duhamel, L.; Plaquevent, J. C. Bull. Soc. Chim. Fr. 1982, II-75-83. Duhamel, L. et al. Tetrahedron 1988, 44, 5495-5506.

  7. Influence of the Tartaric Acyl Substituents Duhamel, L.; Plaquevent, J. C. J. Am. Chem. Soc. 1978, 100, 7415-7416. Duhamel, L.; Plaquevent, J. C. Bull. Soc. Chim. Fr. 1982, II-75-83. Duhamel, L. et al. Tetrahedron 1988, 44, 5495-5506.

  8. Influence of the AminoAcidSide-Chain Duhamel, L.; Plaquevent, J. C. J. Am. Chem. Soc. 1978, 100, 7415-7416. Duhamel, L.; Plaquevent, J. C. Bull. Soc. Chim. Fr. 1982, II-75-83. Duhamel, L. et al. Tetrahedron 1988, 44, 5495-5506.

  9. Influence of the Benzylidene Electronic Properties Duhamel, L.; Plaquevent, J. C. J. Am. Chem. Soc. 1978, 100, 7415-7416. Duhamel, L.; Plaquevent, J. C. Bull. Soc. Chim. Fr. 1982, II-75-83. Duhamel, L. et al. Tetrahedron 1988, 44, 5495-5506.

  10. Influence of the Base Additive Duhamel, L.; Plaquevent, J. C. J. Am. Chem. Soc. 1978, 100, 7415-7416. Duhamel, L.; Plaquevent, J. C. Bull. Soc. Chim. Fr. 1982, II-75-83. Duhamel, L. et al. Tetrahedron 1988, 44, 5495-5506.

  11. ResultsInterpretation Duhamel, L.; Plaquevent, J. C. J. Am. Chem. Soc. 1978, 100, 7415-7416. Duhamel, L.; Plaquevent, J. C. Bull. Soc. Chim. Fr. 1982, II-75-83. Duhamel, L. et al. Tetrahedron 1988, 44, 5495-5506.

  12. Enantioselective Protonation of Open-Chain Enolates Without Internal Chelating Atom • Proton donnor should be only weakly acidic (pKa~15-20) • Proton donnor should contain an electron-rich group with chelating ability • The transferred proton should be located in the proximitiy of the stereogenic center • Proton donnor should be readily accessible in both enantiomeric form and easily recoverable Fehr, C.; Galindo, J. J. Am. Chem. Soc. 1988, 110, 6909-6911. Fehr, C. Angew. Chem., Int. Ed. 1996, 35, 2566-2587.

  13. Enantioselective Protonation of Open-Chain Enolates Without Internal Chelating Atom • Proton donnor should be only weakly acidic (pKa~15-20) • Proton donnor should contain an electron-rich group with chelating ability • The transferred proton should be located in the proximitiy of the stereogenic center • Proton donnor should be readily accessible in both enantiomeric form and easily recoverable Fehr, C.; Galindo, J. J. Am. Chem. Soc. 1988, 110, 6909-6911. Fehr, C. Angew. Chem., Int. Ed. 1996, 35, 2566-2587.

  14. Enantioselective Protonation of Open-Chain Enolates Without Internal Chelating Atom • Proton donnor should be only weakly acidic (pKa~15-20) • Proton donnor should contain an electron-rich group with chelating ability • The transferred proton should be located in the proximitiy of the stereogenic center • Proton donnor should be readily accessible in both enantiomeric form and easily recoverable Fehr, C.; Galindo, J. J. Am. Chem. Soc. 1988, 110, 6909-6911. Fehr, C. Angew. Chem., Int. Ed. 1996, 35, 2566-2587.

  15. α-Damascone Synthesis – Ligand effect

  16. α-Damascone Synthesis – Ligand effect

  17. α-Damascone Synthesis – Ligand effect

  18. α-Damascone Synthesis – Enolate Stereoselectivity Effect Fehr, C.; Galindo, J. Angew. Chem., Int. Ed. 1994, 33, 1888-1890. Fehr, C. Angew. Chem., Int. Ed. 1996, 35, 2566-2587.

  19. α-Damascone Synthesis – Enolate Stereoselectivity Effect Fehr, C.; Galindo, J. Angew. Chem., Int. Ed. 1994, 33, 1888-1890. Fehr, C. Angew. Chem., Int. Ed. 1996, 35, 2566-2587.

  20. α-Damascone Synthesis – Enolate Stereoselectivity Effect Fehr, C.; Galindo, J. Angew. Chem., Int. Ed. 1994, 33, 1888-1890. Fehr, C. Angew. Chem., Int. Ed. 1996, 35, 2566-2587.

  21. γ-Damascone Synthesis – Effect of Alkoxide additives Fehr, C.; Galindo, J. J. Org. Chem. 1988, 53, 1828-1830. Fehr, C.; Galindo, J. Helv. Chim . Acta 1995, 78, 539-552.

  22. γ-Damascone Synthesis – Effect of Alkoxide additives Fehr, C.; Galindo, J. J. Org. Chem. 1988, 53, 1828-1830. Fehr, C.; Galindo, J. Helv. Chim . Acta 1995, 78, 539-552.

  23. γ-Damascone Synthesis – Effect of Alkoxide additives Fehr, C.; Galindo, J. J. Org. Chem. 1988, 53, 1828-1830. Fehr, C.; Galindo, J. Helv. Chim . Acta 1995, 78, 539-552.

  24. γ-Damascone Synthesis – Effect of Alkoxide additives Fehr, C.; Galindo, J. J. Org. Chem. 1988, 53, 1828-1830. Fehr, C.; Galindo, J. Helv. Chim . Acta 1995, 78, 539-552.

  25. γ-Damascone Synthesis – Effect of Alkoxide additives • The elucidation of the reactionmechanismisrenderedmore complexfrom the non-linearrelationshipbetweenreactionproductand H-A* enantiomericpurity. Fehr, C.; Galindo, J. J. Org. Chem. 1988, 53, 1828-1830. Fehr, C.; Galindo, J. Helv. Chim . Acta 1995, 78, 539-552.

  26. γ-Damascone Synthesis – Effect of Alkoxide additives Fehr, C.; Galindo, J. Helv. Chim . Acta 1995, 78, 539-552.

  27. α and γ-Damascone Synthesis – Application to Thioester enolate Fehr, C.; Galindo, J. Helv. Chim . Acta 1995, 78, 539-552. Fehr, C.; Stempf, I.; Galindo, J. Angew. Chem., Int. Ed. 1993, 32, 1042-1044.

  28. α and γ-Damascone Synthesis – Application to Thioester enolate Fehr, C.; Galindo, J. Helv. Chim . Acta 1995, 78, 539-552 Fehr, C.; Stempf, I.; Galindo, J. Angew. Chem. Int. Ed. 1993, 32, 1042-1044.

  29. α and γ-Damascone Synthesis – Application to Thioester enolate Fehr, C.; Galindo, J. Helv. Chim . Acta 1995, 78, 539-552. Fehr, C.; Stempf, I.; Galindo, J. Angew. Chem., Int. Ed. 1993, 32, 1042-1044.

  30. α and γ-Damascone Synthesis – Application to Thioester enolate Fehr, C.; Galindo, J. Helv. Chim . Acta 1995, 78, 539-552. Fehr, C.; Stempf, I.; Galindo, J. Angew. Chem., Int. Ed. 1993, 32, 1042-1044.

  31. α and γ-Damascone Synthesis – Application to Thioester enolate Fehr, C.; Galindo, J. Helv. Chim . Acta 1995, 78, 539-552. Fehr, C.; Stempf, I.; Galindo, J. Angew. Chem., Int. Ed. 1993, 32, 1042-1044.

  32. α-Damascone Synthesis – Catalytic Enantioselective Process • Slow and reversiblegeneration of the transientenolate

  33. α-Damascone Synthesis – Catalytic Enantioselective Process • Slow and reversiblegeneration of the transientenolate • Rapid and irreversibleprotonation of the enolate by H-A*

  34. α-Damascone Synthesis – Catalytic Enantioselective Process • Slow and reversiblegeneration of the transientenolate • Rapidand irreversibleprotonation of the enolate by H-A* • The rate of regeneration of the catalyst and enolatecanbeajustedwith the external proton source (PhSH) • Proton exchange between A*- and PhSH must berapid and complete and PhSLi must bemore nucleophilicthanLi-A* • Background reactionissuppressed by low [PhSH]

  35. α-Damascone Synthesis – Catalytic Enantioselective Process Fehr, C.; Stempf, I.; Galindo, J. Angew. Chem., Int. Ed. 1993, 32, 1042-1044. Fehr, C.; Stempf, I.; Galindo, J. Angew. Chem., Int. Ed. 1993, 32, 1044-1046.

  36. Catalytic Enantioselective Protonation – General Scheme • Withpreformedenolates, [enolate] > [H-A*] • Formally, an external, achiral proton source Z-H selectivelyprotonates A* - and not the enolate • Protonation of A*-shouldberapidwith Z-H (unlessthereis a catalyticenantioselectivetautomerisationmechanism) Fehr, C. Angew. Chem., Int. Ed. 1996, 35, 2566-2587.

  37. What About PreformedEnolates? (Autocalatylic) Fehr, C.; Galindo, J. Angew. Chem., Int. Ed. 1994, 33, 1888-1890. Fehr, C. Angew. Chem., Int. Ed. 1996, 35, 2566-2587.

  38. What About PreformedEnolates? (Autocalatylic) • This autocatalytic process is based on subtile kinetic differences in the proton transfer reactions between H-A*, A*-, the enolate and the non-inducing proton donnor (Z-H). Fehr, C.; Galindo, J. Angew. Chem., Int. Ed. 1994, 33, 1888-1890. Fehr, C. Angew. Chem., Int. Ed. 1996, 35, 2566-2587.

  39. Catalytic Enantioselective Protonation – General Scheme Fehr, C.; Galindo, J. Angew. Chem., Int. Ed. 1994, 33, 1888-1890. Fehr, C. Angew. Chem., Int. Ed. 1996, 35, 2566-2587.

  40. Catalytic Enantioselective Protonation – General Scheme Fehr, C.; Galindo, J. Angew. Chem., Int. Ed. 1994, 33, 1888-1890. Fehr, C. Angew. Chem., Int. Ed. 1996, 35, 2566-2587.

  41. Catalytic Enantioselective Protonation – General Scheme Fehr, C.; Galindo, J. Angew. Chem., Int. Ed. 1994, 33, 1888-1890. Fehr, C. Angew. Chem., Int. Ed. 1996, 35, 2566-2587.

  42. Catalytic Enantioselective Protonation – General Scheme

  43. Catalytic Enantioselective Protonation – Protonnation of H-A*/enolate aggregate Fehr, C.; Galindo, J. Angew. Chem., Int. Ed. 1994, 33, 1888-1890.

  44. CatalyticEnantioselectiveProtonation of Cylic Lithium Enolates Yanagisawa, A.; Kuribayashi, T.; Kikuchi, T.; Yamamoto, H. Angew. Chem., Int. Ed. 1994, 33, 107-109. Yanagisawa, A.; Kikuchi, T.; Wanatabe, T.; Kuribayashi, T.; Yamamoto, H. Synlett1995, 372-273. Yanagisawa, A.; Ishihara, K.; Yamamoto, H. Synlett 1997, 411-420.

  45. CatalyticEnantioselectiveProtonation of Cylic Lithium Enolates Kemp, D. S.; Petrakis, K. S. J. Org. Chem. 1981, 46, 5140-5149. Rebek, J., Jr.; Askew, B.; Killoran, M.; Nemeth, D.; Lin, F.-T. J. Am. Chem. Soc. 1987, 109, 2426-2433.

  46. CatalyticEnantioselectiveProtonation of Cylic Lithium Enolates *With a TMSCl quench at -78 °C! Yanagisawa, A.; Kikuchi, T.; Wanatabe, T.; Kuribayashi, T.; Yamamoto, H. Synlett1995, 372-273. Yanagisawa, A.; Ishihara, K.; Yamamoto, H. Synlett 1997, 411-420.

  47. CatalyticEnantioselectiveProtonation of Cylic Lithium Enolates Yanagisawa, A.; Kikuchi, T.; Wanatabe, T.; Kuribayashi, T.; Yamamoto, H. Synlett1995, 372-273. Yanagisawa, A.; Ishihara, K.; Yamamoto, H. Synlett 1997, 411-420.

  48. EnantioselectiveProtonation of ProchiralSilylEnolEthers and KeteneSilylAcetals Ishihara, K.; Kaneeda, M.; Yamamoto, H. J. Am. Chem. Soc. 1994, 116, 11179-11180. Ishihara, K.; Nakamura, S.; Kaneeda, M.; Yamamoto, H. J. Am. Chem. Soc. 1996, 118, 12854-12855.

  49. EnantioselectiveProtonation of ProchiralSilylEnolEthers and KeteneSilylAcetals • Silyl enol ether is a « stable metal enolate equivalent » which can be isolated • In general, it is difficult the control the enantioselectivity with protonation of silyl enol ether with chiral Brønsted acids • Two main reason for poor induction is bonding flexibility between H and A* and chiral pool of H-A* is limited to sulfonic and carboxylic acids Ishihara, K.; Kaneeda, M.; Yamamoto, H. J. Am. Chem. Soc. 1994, 116, 11179-11180. Ishihara, K.; Nakamura, S.; Kaneeda, M.; Yamamoto, H. J. Am. Chem. Soc. 1996, 118, 12854-12855.

  50. EnantioselectiveProtonation of ProchiralSilylEnolEthers Ishihara, K.; Kaneeda, M.; Yamamoto, H. J. Am. Chem. Soc. 1994, 116, 11179-11180. Ishihara, K.; Nakamura, S.; Kaneeda, M.; Yamamoto, H. J. Am. Chem. Soc. 1996, 118, 12854-12855.

More Related