Data mining using sql server 2005
Download
1 / 11

Data mining using SQL SERVER 2005 - PowerPoint PPT Presentation


  • 201 Views
  • Updated On :

Data mining using SQL SERVER 2005. My name: ZULFIQAR SYED Holds BSEE from Illinois Institute of Technology. MCP in ASP.net (C#) SQL SERVER, ASP.NET, C#, DATA MINING, ANALYSIS SERVICES. CONTACT: DATAGIG@GMAIL.COM HTTP://ZULFIQAR.TYPEPAD.COM. Prerequisites for data mining. SQL SERVER

loader
I am the owner, or an agent authorized to act on behalf of the owner, of the copyrighted work described.
capcha
Download Presentation

PowerPoint Slideshow about 'Data mining using SQL SERVER 2005' - waseemah


An Image/Link below is provided (as is) to download presentation

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.


- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -
Presentation Transcript
Data mining using sql server 2005 l.jpg
Data mining using SQL SERVER 2005

My name: ZULFIQAR SYED

  • Holds BSEE from Illinois Institute of Technology.

  • MCP in ASP.net (C#)

  • SQL SERVER, ASP.NET, C#, DATA MINING, ANALYSIS SERVICES.

  • CONTACT:

    • DATAGIG@GMAIL.COM

    • HTTP://ZULFIQAR.TYPEPAD.COM



Business problem l.jpg
Business Problem

  • How to recommend movies based on customer demographics.

  • How to recommend other movies only based on movies already in shopping basket.


Demonstration l.jpg
Demonstration

  • Simple DMX query

    • Structure,

    • models

    • prediction Query

  • Nested DMX query

    • Structure

    • Nested models

    • nested query


Demonstration recap l.jpg
Demonstration recap.

  • Created/Trained/Queried

    • simple case model.

    • Nested case model.

      • Predict based on demographics.

      • Predict based on already bought items.


Creating structures models l.jpg
Creating Structures/Models

  • Create Structure

    • Define key column. (normally primary key)

    • Define other influencing columns.

    • Define Nested Table

      • Define key

        • (NOT primary key)

        • Depending on context

  • Add one or more models

    • Indicate prediction column(s).

    • Algorithm

      • Parameters (Optimization)


Structure model columns l.jpg
Structure/Model columns.

  • Create Structure (Similar to creating OLTP tables)

    • columns

      • data types

        • Long

        • Double

        • Text

        • Date

        • Table (for nested table)

      • Content Types

        • Continuous

        • discrete

  • Add model(s) to structure

    • column(s) to predict.

      • Input (default)

      • Predict

      • Predict_only


Prediction query basics l.jpg
Prediction Query Basics

  • Prediction Query basics (Similar to OLTP select)

    • (psuedo code)

    • Select

      <column list>

      From <mymodel>

      Join <myinput table>

      On

      <column list>

      Where

      <clause>

  • Make cross services call

    • OpenQuery (preferred, only specify datasource object)

    • OpenRowSet (expose credentials)

  • Join

    • Prediction

    • Natural Prediction Join


Algorithms l.jpg
Algorithms

  • Decision Trees

    • Nodes

    • Split

    • Parameters

    • Nodes

  • Association Rules

    • Item Sets

    • Importance

    • Exist


Model training l.jpg
Model Training

  • Similar to Populating OLTP table.

  • Insert into model, select query

  • Shape operator for nested tables.

  • Skip operator for irrelevant primary key in nested table.


Q and a l.jpg
Q and A

  • Books

    • Data mining Techniques (Berry/Linoff)

    • Data mining with Sql Server 2005. (Tang/MacLennan)

  • Please fill out the evaluation form.

    • NAME: ZULFIQAR SYED

    • SESSION: Relating SQL SERVER 2005 DATA MINING to Business Issues

  • My contact information:

    • DATAGIG@GMAIL.COM

    • Web log: HTTP://ZULFIQAR.TYPEPAD.COM

      These slides will be posted on my web log.