concrete compression analysis n.
Skip this Video
Loading SlideShow in 5 Seconds..
Concrete Compression Analysis PowerPoint Presentation
Download Presentation
Concrete Compression Analysis

Loading in 2 Seconds...

play fullscreen
1 / 14

Concrete Compression Analysis - PowerPoint PPT Presentation

  • Uploaded on

Concrete Compression Analysis. By Anthony Avilla, Michael Sullivan, and Jeremy Brickman ENGR 45, SRJC 12/5/05. What is Concrete Exactly?. Concrete is a composite building material made from the combination of aggregate and cement binder.

I am the owner, or an agent authorized to act on behalf of the owner, of the copyrighted work described.
Download Presentation

PowerPoint Slideshow about 'Concrete Compression Analysis' - waggoner

An Image/Link below is provided (as is) to download presentation

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.

- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -
Presentation Transcript
concrete compression analysis

Concrete Compression Analysis


Anthony Avilla, Michael Sullivan, and Jeremy Brickman



what is concrete exactly
What is Concrete Exactly?
  • Concrete is a composite building material made from the combination of aggregate and cement binder.
  • The most common form of concrete is Portland cement concrete, which consists of mineral aggregate (generally gravel and sand), Portland cement and water.
  • The two major components of concrete are a cement paste and inert materials.
  • The cement paste consists of portland cement, water, and some air either in the form of naturally entrapped air voids or minute, intentionally entrained air bubbles.
  • The inert materials are usually composed of fine aggregate, which is a material such as sand, and coarse aggregate, which is a material such as gravel, crushed stone, or slag.
  • In general, fine aggregate particles are smaller than 6.4 mm (.25 in) in size, and coarse aggregate particles are larger than 6.4 mm (.25 in). Depending on the thickness of the structure to be built, the size of coarse aggregate particles used can vary widely. In building relatively thin sections, a small size of coarse aggregate, with particles about 6.4 mm (.25 in) in size, is used. At the other extreme, aggregates up to 15 cm (6 in) or more in diameter are used in large dams. In general, the maximum size of coarse aggregates should not be larger than one-fifth of the narrowest dimensions of the concrete member in which it is used.
  • The Assyrians and Babylonians used clay as cement.
  • The Egyptians used lime and gypsum cement.
  • The Roman Empire, cements made from pozzolanic ash/pozzolana and an aggregate made from pumice were used to make a concrete very similar to modern portland cement concrete.
  • In 1756, British engineer John Smeaton pioneered the use of portland cement in concrete, using pebbles and powdered brick as aggregate.
  • In modern day mixtures use of recycled/reused materials for concrete ingredients.
  • Concrete does not solidify because water evaporates, but rather cement hydrates, gluing the other components together and eventually creating a stone-like material.
  • During hydration and hardening, concrete needs to develop certain physical and chemical properties, among others, mechanical strength, low permeability to ingress of moisture, and chemical and volume stability.
  • The ultimate strength of concrete is related to water/cement ratio and the size, shape, and strength of the aggregate used. Concrete with lower water/cement ratio (down to 0.35) makes a stronger concrete than a higher ratio. Concrete made with smooth pebbles is weaker than that made with rough-surfaced broken rock pieces for example.
  • Composite
  • When set, has high compressive strength, low tensile strength
  • Brittle
  • Withstands high temperatures
  • Behaves as a ceramic

QUIKRETE® Fast-Setting Concrete #1004-50

QUIKRETE® Fiber-Reinforced Concrete Mix #l006-60


Mix meets or exceeds the strength requirements of ASTM C387. It will achieve a compressive strength of 2500 psi (17.3 MPa) at 7 days and 4000 psi (27.6 MPa) at 28 days when tested in accordance with applicable standards.

QUIKRETE® 5000 High Early Strength Concrete

Mix #1007

QUIKRETE® Concrete Mix #1101 (Ready-To-Use)

chemistry of cement
Chemistry of Cement

H = H2O

C3S = 3CaO.SiO2

C2S = 2CaO.SiO2

C3A = 3CaO.Al2O3

Cs = CaSO4

Ch = Ca(OH)2

C4AF = 4CaO.Al2O3.Fe2O3

2C3S + 6H  3Ch + C3S2H3

2C2S + 4H  Ch + C3S2H3

C3A + 10H + CsH2 C3ACSH12

C3A + 12H + Ch  C3AChH12

C4AF + 10H + 2Ch  C6AFH12

Constituents and Nomenclature

Chemical Reactions

Chemical Composition

application of concrete
Application of Concrete
  • Pavements
  • Building structures
  • Foundations
  • Motorways/roads
  • Overpasses
  • Dams
  • Parking structures
  • Bases for gates/fences/poles
  • Cementing bricks or blocks in walls
  • Any structure requiring high compressive strength and durability
  • Can be used for structures demanding high temperature performance
  • Although brittle, when cast around rebar, can be used in structures requiring ductility or moderate tensile demands
what we did
What We Did!
  • Cut PVC pipe into 9 in. segments
  • Squared off bottom end of each segment
  • Determined directed ratio of water to concrete (by volume)
  • For each product of concrete, we mixed samples containing varying quantities of water (at directed ratio, 15% higher, and 15% lower)
  • Poured samples into PVC casts
  • Allowed samples to set for five days
  • Removed PVC casts
  • Applied compression tests
  • Obtained and analyzed data
compression test
Compression Test

This is the apparatus that we used to test our concrete samples

for our compression analysis


Our “ideal” water concentration samples should have theoretically had the greatest compression, but since they

did not, we should have added more water (such as 15% more) or until visually satisfying. Therefore giving the

“ideal” concentration the highest compression and the 15% more and 15% less, a lower compression result.

Some of our samples had so little water that they just crumbled under compression and gave no data reading.

project pictures
Project Pictures




Shackelford, James F. Introduction to Materials Science for Engineers, 6th Ed. Upper Saddle

River, New Jersey: Pearson Prentice Hall, 2005. (Pages 500 – 543)