Elementy mechaniki kwantowej w ujęciu jakościowym - PowerPoint PPT Presentation

virote
elementy mechaniki kwantowej w uj ciu jako ciowym n.
Skip this Video
Loading SlideShow in 5 Seconds..
Elementy mechaniki kwantowej w ujęciu jakościowym PowerPoint Presentation
Download Presentation
Elementy mechaniki kwantowej w ujęciu jakościowym

play fullscreen
1 / 29
Download Presentation
Elementy mechaniki kwantowej w ujęciu jakościowym
146 Views
Download Presentation

Elementy mechaniki kwantowej w ujęciu jakościowym

- - - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - - -
Presentation Transcript

  1. Elementy mechaniki kwantowej w ujęciu jakościowym

  2. 1. Hipoteza Broglie`a • W 1924r Louis Victor de Broglie przyjął postulat, że poruszający się elektron jako cząsteczka materialna ma również właściwości falowe, • Powyższy postulat został potwierdzony w latach 1924-28, kiedy sformułowano nową teorię mechaniki kwantowej (mechaniki falowej), • Teoria umożliwiła poprawne i ilościowe opisanie właściwości cząsteczki (Max Karl Ernest Planck, Arnold Sommerfeld, Erwin Schrodinger, Wener Karl Heisenberg, Wolfgang Pauli, Max Born).

  3. 2. Zasada nieoznaczoności Heisenberga • Zgodnie z kwantowo-mechanicznym opisem atomu, nie można wyobrazić sobie elektronu w stanie stacjonarnym jako sztywnej kulki-punktu krążącego po ustalonej orbicie wokół jądra, • Nie jest możliwe jednoczesne dokładne wyznaczenie położenia i pędu elektronu (to jest podanie toru i gdzie znajduje się w danym momencie),

  4. Cd • Zasada nieoznaczoności Heisenberga mówi, że można rozpatrywać tylko prawdopodobieństwo znalezienia elektronu w określonym czasie w dowolnym punkcie przestrzeni wokół jądra (w tzw. w chmurze elektronowej, • Chmura elektronowa nie ma wyraźnej granicy zewnętrznej, z tym że im dalej od jądra tym mniejsze prawdopodobieństwo znalezienia elektronu.

  5. 3. Orbital atomowy – poziom orbitalny • Stan elektronu w atomie opisuje funkcja falowa Ψ (psi) zwana orbitalem atomowym (poziomem orbitalnym), • Kwadrat funkcji psi (Ψ2) podaje prawdopodobieństwo znalezienia elektronu w danym obszarze przestrzeni wokół jądra – orbital atomowy (określona przestrzeń wokół jądra w której to prawdopodobieństwo wynosi 90%), • orbitale odpowiadają określonym stanom energetycznym elektronów w atomie a to oznacza, że elektrony nie mogą przyjmować dowolnej energii – energia elektronów jest skwantowana

  6. Cd • Geometryczny kształt orbitali wskazuje na przestrzenny rozkład prawdopodobieństwa znalezienie elektronu opisanego danym orbitalem, • Kontur orbitalu (powierzchnia ograniczająca przestrzeń) ogranicza przestrzeń w której prawdopodobieństwo znalezienia elektronu jest największe,

  7. Cd • Najniższemu poziomowi energetycznemu odpowiada obrbital s – kulisty, wyższemu poziomowi energetycznemu odpowiada orbital p – klepsydra, kolejne poziomy energetyczne to: d i f,

  8. 4. Liczby kwantowe a) Główna liczba kwantowa – n

  9. Główna liczba kwantowa - n • Określa energię elektronu w atomie i przyjmuje wartości licz naturalnych n = 1, 2, 3, 4, 5, 6, 7, ... • Stany kwantowe o takiej samej wartości głównej liczby kwantowej n tworzą powłokę elektronową odpowiednio n=1 > K, n=2 > L, n=3 > M, n=4 > N, n=5 > O, n=6 >P, n=7 > Q, • Liczbę stanów kwantowych równą liczbie elektronów, które mogą zapełniać daną powłokę oblicza się z wyrażenia2n2

  10. Liczby kwantowe cd Poboczna liczba kwantowa – l (orbitalna liczba kwantowa – l)

  11. Poboczna (orbitalna) liczba kwantowa l • Rozróżnia stany energetyczne elektronów w tej samej powłoce i charakteryzuje symetrię podpowłok elektronowych (orbitali), • l przybiera wartości liczb całkowitych 0≤ l ≤ n-1 • Dla n =1, l=0, dlan =2, l= 0,1 • dla n =3, l= 0,1,2 dla n =4, l = 0,1,3,4 • l=0 (s), l=1(p), l=2(d) l=3(f)

  12. Poboczna liczba kwantowa - l • Stany kwantowe o tej samej wartości liczby n i tej samej liczby l tworzą podpowłokę eletronową – orbital, • Maksymalną liczbę stanów kwantowych – liczbę elektronów w danej podpowłoce oblicz się z wyrażenia: 4·l + 2

  13. Liczby kwantowe

  14. c) Liczby kwantowe Magnetyczna liczba kwantowa - m

  15. Magnetyczna liczba kwantowa – m • Określa liczbę poziomów orbitalnych związaną z ułożeniem się orbitali pod wpływem zewnętrznego pola magnetycznego. • m przyjmuje wartości liczb całkowitych - l≤ m≤l

  16. Liczby kwantowe

  17. Liczby kwantowe Magnetyczna spinowa liczba kwantowa ms

  18. Magnetyczna spinowa liczba kwantowa ms • Związana jest z momentem pędu elektronu obracającego się wokół własnej osi, • Przyjmuje dwie wartości + 1/2 i -1/2

  19. 5. Zakaz Pauliego i reguła Hunda • Jest to drugie prawo mechaniki kwantowej – w atomie nie mogą istnieć dwa elektrony o identycznym stanie kwantowym, tzn. o tych samych wartościach czterech przypisanych im liczb kwantowych (n, l, m, ms), muszą różnić się przynajmniej jedną z tych liczb. • Reguła Hunda – atom w stanie podstawowym ma maksymalną ilość elektronów niesparowanych

  20. Liczba stanów kwantowych dla n=1

  21. Liczba stanów kwantowych dla n = 2 • Gdy n=2: to • l=0 (podpowłoka – orbital s); m=0; ms=+1/2, -1/2 • l=1 (podpowłoka – orbital p); m=1, 0, -1; ms= +1 /2, -1/2

  22. Liczba stanów kwantowych dla n = 2 cd.

  23. Liczba stanów kwantowych dla n = 3 • Gdy n = 3, to: • l=0 (podpowłoka – orbital s); m=0; ms=+1/2, • -1/2 • l=1 (podpowłoka – orbital p); m=-1, 0, 1; ms=+1/2, -1/2 • l=2 (podpowłoka – orbital d); m=-2, -1, 0, 1, 2; ms= +1/2, -1/2

  24. Liczba stanów kwantowych dla n = 3 cd.

  25. Liczba stanów kwantowych dla n = 3 cd.

  26. Liczba stanów kwantowych cd • Liczbę stanów kwantowych (liczbę elektronów) dla wyższych stanów energetycznych oblicza się podobnie dla n=4, n=5, n=6, n=7 (N32, O50, P72, Q98), • Każdy orbital może opisywać tylko 2 elektrony o zbliżonej energii i przeciwnym spinie, • Takie elektrony nazywamy elektronami sparowanymi, • Każda powłoka elektronowa może zwierać tylko jeden orbital typu s (s2), trzy orbitale typu p (p6), pięć orbitali typu d (d10), siedem orbitali typu f (f14).