kinesin hydrolyses one atp per 8 nm step
Skip this Video
Download Presentation
Kinesin hydrolyses one ATP per 8-nm step

Loading in 2 Seconds...

play fullscreen
1 / 10

Kinesin hydrolyses one ATP per 8-nm step - PowerPoint PPT Presentation

  • Uploaded on

Kinesin hydrolyses one ATP per 8-nm step. Mark J. Schnitzer *† & Steven M. Block†‡ Departments of * Physics and † Molecular Biology, and ‡ Princeton Materials Institute, Princeton University, Princeton, New Jersey 08544, USA Nature 24 Juli 1997, vol. 388, pp. 386-390. Basics. Kinesin :

I am the owner, or an agent authorized to act on behalf of the owner, of the copyrighted work described.
Download Presentation

PowerPoint Slideshow about 'Kinesin hydrolyses one ATP per 8-nm step' - violet-ward

An Image/Link below is provided (as is) to download presentation

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.

- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -
Presentation Transcript
kinesin hydrolyses one atp per 8 nm step

Kinesin hydrolyses one ATP per 8-nm step

Mark J. Schnitzer*† & Steven M. Block†‡

Departments of * Physics and † Molecular Biology, and ‡ Princeton Materials Institute, Princeton University, Princeton, New Jersey 08544, USA

Nature 24 Juli 1997, vol. 388, pp. 386-390



Two-headed ATP driven motor protein that moves along the microtubules in discrete steps of 8 nm.

Central question:

How many molecules of ATP are consumed per step?


Using the processivity of kinesin, statistical analysis of intervals between steps at limiting ATP and studies of fluctuations in motor speed as a function of [ATP]


Silica beads (0.5 mm) with nonspecifically bound kinesin captured in an optical trap and deposited onto immobilized microtubules bound to the coverglass. Subsequent movements recorded with optical-trapping interferometry.

Low concentrations of kinesin protein ensures maximum one kinesin per bead.

Applied force: 7 fN nm-1 => mean force < 0.9 pN (< 15 % stall)

velocity vs atp
Velocity vs. [ATP]

Michaelis-Menten kinetics

yielded kcat = 680 ± 31 nms-1and Km = 62 ± 5 mM.

  • [ATP] independent coupling ratio (# ATP hydrolysed per advance).

Poisson statistics f = 1 - exp(-lC) confirms that single molecules suffice to move beads. (c2 = 0.7)

stepping length
Stepping length

Advance of kinesin molecules in clear increments of 8 nm (minority of other step sizes cannot be excluded).

At limiting [ATP] kcat/Km = 11 ± 1 nms-1 mM-1implying stepping rate of 1.4 ± 0.1 mM-1 s-1

atp per step
ATP per step

Exponential distribution => solitary, rate-limiting biochemical reaction (ATP binding) i.e. kinesin requires only one ATP per step.

If (n) ATP molecules were needed the distribution would be a convolution of n exponentials.

Data well fit by single exponential (reduced c2 = 0.6) with a rate of 1.1 ± 0.1 mM-1 s-1

(Two exponentials gave c2 = 1.4 with a rate of 0.8 ± 0.06 mM-1 s-1)

fluctuation analysis
Fluctuation analysis

For single processive motors, fluctuations about the average speed reflect underlying enzyme stochasticity.

Randomness parameter, r, is a dimensionless measure of the temporal irregularity between steps. For motors that step a distance, d, and whose positions are functions of time, x(t), it’s:

Since both numerator and denominator increase linearly in time, their ratio approaches a constant. The reciprocal of this constant, r-1, supplies a continuous measure of the number of rate-limiting transitions per step.

Robust to sources of thermal and instrumental noise and without need to identify individual stepwise transitions.


Test of determinability of r performed with both simulated and real data.

Simulated: Stochastic staircase records and gaussian white noise.

Real: 2 mM AMP-PNP (non-hydrolysable ATP analogue) and movement of stage.

Both tests positive i.e. stepping statistics could be distinguished.


Saturating ATP value implies minimum two rate-limiting transitions per step. Biochemical pathways also predict r ≈ ½ with assumption of one hydrolysis per step.

For limiting [ATP], r rises through 1, reflecting a single rate-limiting transition once per advance (ATP binding).

Why is r > 1 at limiting [ATP]?

Not heterogeneity in ATP binding rate, bead size or stiffness of bead-kinesin linkage, futile hydrolysis, sticking or transient inactive states.

Maybe backwards movement (7 %) and/or double step (16 %).


Kinesin hydrolyses only one ATP per 8 nm step. Models consistent with this result is:

  • Alternating 16-nm steps by each of the two heads.
  • Two shorter substeps of which only one is ATP-dependent and the ATP-independent substep must be at least as fast as kcat (Dtsubstep ≈ 15 ms and beneath resolution).
  • Alternatively the ATP-independent substep might be load dependent with a rate slowed with increasing load.

Another future challenge lies in understanding the molecular basis of kinesin movement, since the motor domain of kinesin is quite small (4.5 x 4.5 x 7.0 nm) compared to the 8 nm step.