description of t band in 182 os with hfb gcm n.
Skip this Video
Loading SlideShow in 5 Seconds..
Description of t-band in 182 Os with HFB+GCM PowerPoint Presentation
Download Presentation
Description of t-band in 182 Os with HFB+GCM

play fullscreen
1 / 22
Download Presentation

Description of t-band in 182 Os with HFB+GCM - PowerPoint PPT Presentation

vin
83 Views
Download Presentation

Description of t-band in 182 Os with HFB+GCM

- - - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - - -
Presentation Transcript

  1. Description of t-band in 182Os with HFB+GCM Yukio Hashimoto Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8571, Japan TakatoshiHoribata Department of Software and Information Technology, Aomori University, Aomori, Aomori 030-0943, Japan 1

  2. Contents 1. Introduction 2. Three-dimensional Cranking 3. Tilted states and GCM 4. Concluding remarks 2

  3. 1. Introduction: general rotation mode 3

  4. ω x ω x ω z y y wobbling motion tilted axis rotation (high K t-band) ω x x z z y y 4

  5. wobbling band Odegard et al. Phys.Rev.Lett.86(2001), 5866 ω 5

  6. t-band g-band ω 6 P.M.Walker et al., Phys. Lett. B309(1993), 17-22.

  7. 182Os t-band (even component ) g-band 7 P.M.Walker et al., Phys. Lett. B309(1993), 17-22.

  8. theoretical frameworks TAC *S. Frauendorf, Nucl. Phys. A557, 259c(1993) *S. Frauendorf, Nucl. Phys. A677, 115(2000). *S. Frauendorf, Rev. Mod. Phys. 73, 463(2001). HFB+RPA *M. Matsuzaki, Nucl. Phys. A509, 269(1990). *Y. R. Shimizu and M. Matsuzaki, Nucl. Phys. A588, 559(1996). *M. Matsuzaki, Y. R. Shimizu and K. Matsuyanagi, Phys. Rev. C65, 041303(R)(2002). *M. Matsuzaki, Y. R. Shimizu and K. Matsuyanagi, Phys. Rev. C69, 034325(2004) HFB+GCM *A. K. Kerman and N. Onishi, Nucl. Phys. A361, 179(1981). *N. Onishi, Nucl. Phys. A456, 279(1986). *T. Horibata and N. Onishi, Nucl. Phys. A596, 251(1996). *T. Horibata, M. Oi, N. Onishi and A. Ansari, Nucl. Phys. A646, 277(1999); A651, 435(1999). *Y. Hashimoto and T. Horibata, Phys. Rev. C74, 017301(2006) *Y. Hashimoto and T. Horibata, EPJ A42, 571(2009). 8

  9. 2. Three-dimensional cranked HFB A.K.Kerman and N.Onishi, Nucl.Phys.A361(1981),179 9

  10. Constraints for HFB calculation ψ x x z y y 10

  11. Starting points of tilted wave functions ω 11

  12. 18 Energy vs tilt angle J = 18 ψ x ψ z TAR y y 12

  13. j// ω ω 13

  14. TAR states and K=8 band K ~ const. 30 * sin(15°) = 7.8 28 * sin(16°) = 7.7 26 * sin(17°) = 7.6 24 * sin(18°) = 7.6 TAR 22 * sin(20°) = 7.5 18 * sin(24°) = 7.3 tilt angle (degree) 14

  15. TAR states ( K=8 band) angular momentumJ 15

  16. odd t-band even g-band 3. Tilted states and GCM P.M.Walker et al., Phys. Lett. B309, 17-22(1993). 16

  17. s-branches 28 26 24 ψ 22 ψ 17

  18. D, V smaller ΔE larger Energy splitting in tunneling effect ーΨ V D 18

  19. odd t-band even V g-band P.M.Walker et al., Phys. Lett. B309(1993), 17-22. 19

  20. Energy splitting in GCM generator coordinatea :tilt angleψ ∫ wave function HFB solution ata Cf. T.Horibata et al., Nucl.Phys.A646(1999), 277. M.Oi et al., Phys. Lett. B418(1998), 1. Phys. Lett. B525(2002), 255. 20

  21. GCM amplitudes(J = 24,26,28) (ΔE= 93 keV) ΔE=252 keV ΔE=130 keV 21

  22. 4. Concluding Remarks   1. We have microscopically calculated three-dimensional rotation.   2. The TAR states are expected to be the members of   a band with K = 8 (t-band).  experimental results by Walker’s group.   3. GCM calculations (refinement) are in progress. 22