description of t band in 182 os with hfb gcm
Download
Skip this Video
Download Presentation
Description of t-band in 182 Os with HFB+GCM

Loading in 2 Seconds...

play fullscreen
1 / 22

Description of t-band in 182 Os with HFB+GCM - PowerPoint PPT Presentation


  • 76 Views
  • Uploaded on

Description of t-band in 182 Os with HFB+GCM . Yukio Hashimoto Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8571, Japan . Takatoshi Horibata Department of Software and Information Technology,

loader
I am the owner, or an agent authorized to act on behalf of the owner, of the copyrighted work described.
capcha
Download Presentation

PowerPoint Slideshow about 'Description of t-band in 182 Os with HFB+GCM' - vin


An Image/Link below is provided (as is) to download presentation

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.


- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -
Presentation Transcript
description of t band in 182 os with hfb gcm
Description of t-band in 182Os with HFB+GCM

Yukio Hashimoto

Graduate School of Pure and Applied Sciences,

University of Tsukuba, Tsukuba, Ibaraki 305-8571, Japan

TakatoshiHoribata

Department of Software and Information Technology,

Aomori University, Aomori, Aomori 030-0943, Japan

1

slide2
Contents

1. Introduction

2. Three-dimensional Cranking

3. Tilted states and GCM

4. Concluding remarks

2

slide4
ω

x

ω

x

ω

z

y

y

wobbling motion

tilted axis rotation

(high K t-band)

ω

x

x

z

z

y

y

4

slide5
wobbling band

Odegard et al.

Phys.Rev.Lett.86(2001), 5866

ω

5

slide6
t-band

g-band

ω

6

P.M.Walker et al., Phys. Lett. B309(1993), 17-22.

slide7
182Os

t-band

(even component )

g-band

7

P.M.Walker et al., Phys. Lett. B309(1993), 17-22.

slide8
theoretical frameworks

TAC

*S. Frauendorf, Nucl. Phys. A557, 259c(1993)

*S. Frauendorf, Nucl. Phys. A677, 115(2000).

*S. Frauendorf, Rev. Mod. Phys. 73, 463(2001).

HFB+RPA

*M. Matsuzaki, Nucl. Phys. A509, 269(1990).

*Y. R. Shimizu and M. Matsuzaki, Nucl. Phys. A588, 559(1996).

*M. Matsuzaki, Y. R. Shimizu and K. Matsuyanagi,

Phys. Rev. C65, 041303(R)(2002).

*M. Matsuzaki, Y. R. Shimizu and K. Matsuyanagi,

Phys. Rev. C69, 034325(2004)

HFB+GCM

*A. K. Kerman and N. Onishi, Nucl. Phys. A361, 179(1981).

*N. Onishi, Nucl. Phys. A456, 279(1986).

*T. Horibata and N. Onishi, Nucl. Phys. A596, 251(1996).

*T. Horibata, M. Oi, N. Onishi and A. Ansari,

Nucl. Phys. A646, 277(1999); A651, 435(1999).

*Y. Hashimoto and T. Horibata, Phys. Rev. C74, 017301(2006)

*Y. Hashimoto and T. Horibata, EPJ A42, 571(2009).

8

slide9
2. Three-dimensional cranked HFB

A.K.Kerman and N.Onishi, Nucl.Phys.A361(1981),179

9

slide12
18

Energy vs tilt angle

J = 18

ψ

x

ψ

z

TAR

y

y

12

slide13
j// ω

ω

13

slide14
TAR states and K=8 band

K ~ const.

30 * sin(15°) = 7.8

28 * sin(16°) = 7.7

26 * sin(17°) = 7.6

24 * sin(18°) = 7.6

TAR

22 * sin(20°) = 7.5

18 * sin(24°) = 7.3

tilt angle (degree)

14

slide15
TAR states ( K=8 band)

angular momentumJ

15

slide16
odd

t-band

even

g-band

3. Tilted states and GCM

P.M.Walker et al., Phys. Lett. B309, 17-22(1993).

16

slide17
s-branches

28

26

24

ψ

22

ψ

17

slide18
D, V smaller

ΔE larger

Energy splitting in tunneling effect

ーΨ

V

D

18

slide19
odd

t-band

even

V

g-band

P.M.Walker et al., Phys. Lett. B309(1993), 17-22.

19

slide20
Energy splitting in GCM

generator coordinatea :tilt angleψ

wave function

HFB solution ata

Cf. T.Horibata et al., Nucl.Phys.A646(1999), 277.

M.Oi et al., Phys. Lett. B418(1998), 1.

Phys. Lett. B525(2002), 255.

20

slide21
GCM amplitudes(J = 24,26,28)

(ΔE= 93 keV)

ΔE=252 keV

ΔE=130 keV

21

slide22
4. Concluding Remarks

  1. We have microscopically calculated three-dimensional rotation.

  2. The TAR states are expected to be the members of

  a band with K = 8 (t-band).

 experimental results by Walker’s group.

  3. GCM calculations (refinement) are in progress.

22

ad