1 / 8

Sinusrelation Cosinusrelation

Sinusrelation Cosinusrelation. Beviser. Forudsætninger: Definition af Sinus (i enhedscirklen) Definition af Cosinus (i enhedscirklen) Sin og Cos i den retvinklede trekant. hyp. hyp ∙ sin(v). v. hyp ∙ cos (v). c. a. A. C. sin(A). 1. sin(A). A.

vila
Download Presentation

Sinusrelation Cosinusrelation

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. SinusrelationCosinusrelation Beviser

  2. Forudsætninger: Definition af Sinus (i enhedscirklen) Definition af Cosinus (i enhedscirklen) Sin og Cos i den retvinklede trekant hyp hyp∙sin(v) v hyp∙cos(v)

  3. c a A C sin(A) 1 sin(A) A Sinusrelationen i en retvinklet trekant Da trekanterne er ensvinklede får vi samme forhold mellem de to lodrette sider, som mellem de to skrå sider: Bruger vi 1 = sin(90°) = sin(C) fås: (Eller på hovedet):

  4. Sinusrelation i ”skævvinklet” trekant P r q R Q p r q h Q R

  5. Vi bruger om retvinklede trekanter: h h r r∙sin(Q) q q∙sin(R) hyp∙sin(v) hyp Q R v

  6. Cosinusrelation i ”skævvinklet” trekant P r q R Q p r q h Q p

  7. P r q r q h h = r·cos(Q) R Q Q p y x Pyth: h2= r2 – x2 h2= q2– y2 h2= h2 r2 – x2 = q2– y2 q2– y2 = r2 – x2 q2 = r2 – x2+ y2 q2 = r2 – x2+ p2+ x2– 2∙p∙x q2 = r2 + p2 – 2∙p∙x q2 = r2 + p2 – 2∙p∙ r∙cos(Q) Da x+y = p fås y = p – x, hvoraf y2 = (p – x)2 = (p – x)·(p – x) = p2 – p·x – x·p + x2 = p2 + x2 – 2·p·x hyp v hyp∙cos(v) Vi bruger om retvinklede trekanter:

More Related