Download
timelybid com n.
Skip this Video
Loading SlideShow in 5 Seconds..
TimelyBid PowerPoint Presentation

TimelyBid

1056 Views Download Presentation
Download Presentation

TimelyBid

- - - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - - -
Presentation Transcript

  1. TimelyBid.com • Provide an integration between eBay and Google Calendar for quick and easy visualization of timely data regarding eBay bids. • By Katie Varland, Josh Smith, Sean Humpherys MIS-510B with thanks to Dr. Chen & Xin Li

  2. Timely Bid Organization customer Registers Spider API calls Spider & MySQL DB Timelybid.com Update AI models Analyze & DM API calls Flash MX Dynamic reports Data miner with DM computer

  3. Novelty • IDEA • Integrate bid data into Google Calendar from eBay real time • DATA MINING • AWOL risk assessment using three distinct AI algorithms • VISUALIZATION • Improved visualization of eBay data • Dynamic flash-based charts • Visualization of data mining predictions • LEVERAGE OPEN SOURCE • Joomla & Joomla CMS modules • YALE/WEKA for data mining • XML/SWF Charts for dynamic charts

  4. Open Source and Other Tools • Joomla CMS • Customized user registration module • Available Virtuemart for Pay Pal integration $39.95 • Apache/Linux/Php/MySQL • eBay API • Google Calendar API • RapidMinger (YALE) / Weka for data mining • XML/SWF Charts for dynamic charts (limited version free or full license $45)

  5. Demo RapidMiner • RapidMiner formerly YALE • www.rapidminer.com • Download the OWN-free version for easy off-line mining • Download GPL version if you desire to dynamically link the system into your program

  6. AI Avatars for AWAL Risk Assessment • AI Avatar Joseph is our risk adverse assessor using C4.5 • AI Avatar Julie is an moderate risk assessor using AD Tree algorithm • AI Avatar Scott is our risk seeking assessor using REP Tree.

  7. Data collected from eBay for mining purposes isRegistered as dependent variable userID Lifetime Positive Feed Back% Feed Back Score All Positive FB   Member Since Location # Items for Sale # of SubCategories # of Main Categories   # of One Month Positive Feedback # of Six Months Positive FB # of Twelve Months Positive FB # of One Month Negative FB # of Six Months Negative FB # of Twelve Months Negative FB   # of Positive FB # of Negative FB # FB Withdrawn# Bids Retracted Data Mined

  8. Code for Avatars if($userArray['twelveMoNeg'] < 1.5) { if ($userArray['twelveMoPos'] < 0.5) { if ($userArray['numPosFB'] < 46.5) {$vote = true;} else if ($userArray['numPosFB'] >= 46.5) { if($userArray['posFB'] < 97.55) {$vote = false;} else if($userArray['posFB'] >= 97.55) { if ($userArray['allPosFB'] < 23450.5) { if ($userArray['allPosFB'] < 13578.5) {$vote = false;} else if ($userArray['allPosFB'] >= 13578.5) {$vote = true;} } else if ($userArray['allPosFB'] >= 23450.5) {$vote = false;} } } } else if ($userArray['twelveMoPos'] >= 0.5)

  9. AWOL Risk Assessment • Collected nearly 150,000 records on eBay users • In experimental phase, used up to 80,000 records for training. Resulted in over-learning but identified important attributes. • In production phase, used 13,000 specially selected records to train and 50,000 to test. Achieved between 95% and 98% accuracies on predicting if the user became unregistered in the last thirty days.

  10. How to Chart Data • XML/SWF Charts • Charts.swf • PHP Demo • <!-- Data actual --> • <chart_data> • <row> • <null/> • <string> • <?php mysql_data_seek($MaxBidByBidder,0); ?> • <?php while ($row_MaxBidByBidder = mysql_fetch_assoc($MaxBidByBidder)){ ?> • <?php echo $row_MaxBidByBidder['BidderID']; ?> • <?php } ?> • </string> • </row> • <row> • <string></string> • <string> • <?php mysql_data_seek($MaxBidByBidder,0); ?> • <?php while ($row_MaxBidByBidder = mysql_fetch_assoc($MaxBidByBidder)){ ?> • <?php echo $row_MaxBidByBidder['MaxBidAmount']; ?> • <?php } ?> • </string> • </row> • </chart_data>