Properties of gases
Download
1 / 25

Properties of Gases - PowerPoint PPT Presentation


  • 394 Views
  • Updated On :

Properties of Gases. Gases may be compressed. Gases expand to fill their containers uniformly. All gases have low density. Gases may be mixed. A confined gas exerts constant pressure on the walls of its container uniformly in all directions. Fig. 4-2, p. 97. K inetic M olecular T heory.

loader
I am the owner, or an agent authorized to act on behalf of the owner, of the copyrighted work described.
capcha
Download Presentation

PowerPoint Slideshow about 'Properties of Gases' - velika


An Image/Link below is provided (as is) to download presentation

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.


- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -
Presentation Transcript
Properties of gases l.jpg
Properties of Gases

  • Gases may be compressed.

  • Gases expand to fill their containers uniformly.

  • All gases have low density.

  • Gases may be mixed.

  • A confined gas exerts constant pressure on the walls of its container uniformly in all directions.



K inetic m olecular t heory l.jpg
Kinetic Molecular Theory

  • Matter is composed of tiny particles (atoms, molecules or ions) with definite and characteristic sizes that never change.

  • The particles are in constant random motion, that is they possess kinetic energy. Ek = 1/2 mv2

  • The particles interact with each other through attractive and repulsive forces (electrostatic interactions), that is the possess potential energy. U = mgh

  • The velocity of the particles increases as the temperature is increased therefore the average kinetic energy of all the particles in a system depends on the temperature.

  • The particles in a system transfer energy form one to another during collisions yet no net energy is lost from the system. The energy of the system is conserved but the energy of the individual particles is continually changing.




Pressure l.jpg
PRESSURE

  • A physical property of matter that describes the force particles have on a surface. Pressure is the force per unit area, P = F/A

  • Pressure can be measured in:

  • atmosphere (atm)

  • millimeters of mercury (mmHg)

  • (torr) after Torricelli, the inventor of the mercury barometer (1643)

  • pounds per square inch (psi)

    1 atm = 760 mmHg = 760 torr = 14.69 psi




Temperature l.jpg
TEMPERATURE

  • A physical property of matter that determines the direction of heat flow.

  • Measured on three scales.

  • Fahrenheit oF Celsius oC

  • Kelvin K

  • oF = (1.8 oC) + 32 oC = (oF - 32)/1.8

  • K = oC + 273.15



Slide11 l.jpg

EMPIRICAL GAS LAWS

Boyle’s Law P1V1 = P2V2

Charles’ Law V1 / T1 = V2 / T2

Combined Gas Law P1V1 / T1 = P2 V2 / T2


Slide12 l.jpg

Boyle’s Law: For a fixed quantity of gas at constant temperature, pressure is inversely proportional to volume.

Fig. 4-12, p. 108




Slide15 l.jpg

Charles’s Law: The volume of a fixed quantity of gas at constant pressure is directly proportional to absolute temperature.

Fig. 4-9, p. 105


Empirical gas laws l.jpg
Empirical Gas Laws

1. At 25oC, a sample of N2 gas under a pressure of 689 mmHg occupies 124 mL in a piston-cylinder arrangement before compression. If the gas is compressed to 75% of its original volume, what must be the new pressure (in atm) at 25oC?

First make a list of the measurements made:

P1=689 mmHg V1 = 124 mL

P2 = ? V2 = 75% V1

From the variables, choose the appropriate equation, in this case Boyle’s Law: P1V1=P2V2

(689 mmHg) (124 mL) = P2 (0.75 x 124 mL)

Solve for P2:

P2 = (689mmHg) (124 mL) / (93 mL) = 919 mmHg

Now convert to atm:

919 mmHg (1 atm / 760 mmHg) = 1.21 atm


Empirical gas laws17 l.jpg
Empirical Gas Laws

2. The gas in a Helium filled ball at 25oC exerts a volume of 4.2 L. If the ball is placed in a freezer and the volume decreases to 1/8 of its original value, what is the temperature inside the ball?

First make a list of the measurements made:

V1=4.2 atm T1 = 25 oC + 273.15 = 298.15

V2 = 1/8 P1 T2 = ?

From the variables, choose the appropriate equation, in this case Charles’ Law: V1/T1=V2/T2

(V1) / (298 K) = (1/8 V1) / T2

Solve for T2:

T2 = [(298 K) (1/8 V1)] / (V1) = 298 / 8 = 37.3 K or -235 oC


Empirical gas laws18 l.jpg
Empirical Gas Laws

  • A balloon containing 6.50 grams of NH3 has a volume of 10.30 L at a temperature of 20.0oC and a pressure of 689.2 torr. What would be the pressure of NH3 if the volume decreased to 2.50 L without a change in temperature?

  • A sample of CO gas has a volume of 25.0 L at a pressure of 789 torr and a temperature of 20oC. What must the temperature be if the pressure was unchanged but the volume needed to be increased to 95.0 L?



Combined gas law l.jpg
COMBINED GAS LAW

  • A gas occupies a volume of 720 mL at 37oC and 640 mmHg pressure. Calculate the volume the gas would occupy at 273 K and 1 atm.

    P1V1 / T1 = P2V2 / T2

    rearranged to solve for V2 is:

    V2 = P1 V1 T2 / P2 T1

    V2 = (640 mmHg)(720 mL) (273 K) / (760 mmHg) (310 K)

    V2 = 534 mL


Combined gas law21 l.jpg
COMBINED GAS LAW

What would be the volume at STP of 3.62 liters of nitrogen gas, measured at 649 torr and 16 °C?

P1V1 = P2V2 rearranged to solve for V2 is:

T1 T2

V2 = P1 V1 T2 V2 = (649 torr)(3.62 L) (273 K)

P2 T1(760 torr) (16 + 273K)

V2 = 2.92 L


Combined gas law22 l.jpg
COMBINED GAS LAW

  • A gas occupies a volume of 720 mL at 37oC and 640 mmHg pressure.

    • Calculate the pressure if the temperature is increased to 1000oC & the volume expands to 900 mL.

    • Calculate the temperature if the pressure is decreased to 10 torr & the volume is reduced to 500 mL.

P2 = 2.1 x 103 mmHg

T2 = 3.4 K or -270 oC


Practice problem 20a l.jpg
PRACTICE PROBLEM # 20a

1. You prepared carbon dioxide by adding aqueous HCl to marble chips, calcium carbonate. According to your calculations, you should obtain 79.4 mL of carbon dioxide at 0 oC and 760 mmHg. How many milliliters of gas would you obtain at 27oC at the same pressure?

2. Divers working from a North Sea drilling platform experiences pressures of 50 atm at a depth of 5.0 x 102 m. If a balloon is inflated to a volume of 5.0 L (the volume of a lung) at that depth at a water temperature of 4.0oC, what would the volume of the balloon be on the surface (1.0 atm) at a temperature of 11 oC?

3. What volume would 5.30 L of H2 gas at 0 oC and 760 mmHg occupy if the temperature was increased to 70oF and the pressure to 830 torr?

4. The pressure gauge reads 125 psi on a 0.140-m3 compressed air tank when the gas is at 33.0 oC. To what volume will the contents of the tank expand if they are released to an atmospheric pressure of 751 torr and a temperature of 13oC?

5. A gas has a volume of 397.0 mL at 14.70 atm. What will be its pressure (in torr) if the volume is changed to 4.100 L?

87.3 mL

256 L

5.23 L

1.126 m3

1082 torr


Practice problem 20a24 l.jpg
PRACTICE PROBLEM # 20a

6. Which of the following statements is false?

a) If the Celsius temperature is doubled, the pressure of a fixed volume of gas would double.

b) All collisions between gas molecules are perfectly elastic (no energy is lost) according to KMT.

c) The volume of gas is inversely proportional to the temperature of gas present (P constant)

d) Gases are capable of being greatly compressed.

7. Which of the following statements are true?

a) In a large container of O2 gas the pressure exerted by the oxygen will be greater at the bottom of the container.

b) Of the three states of matter, gases are the most compact and the most mobile.

c) The formula of ozone is 3 O2.

d) Molecules of O2 gas and H2 gas at the same temperature will have the same average kinetic energies and the same average velocities.

C

D


Slide25 l.jpg

GROUP STUDY PROBLEMS

1. A sample of O2 gas initially at 0oC and 1.0 atm is transferred from a 2-L container to a 1-L container at constant temperature. a) What effect does this change have on the average kinetic energy of the gas molecules? b) What effect does the total number of collisions of O2 molecules with the container walls in a unit time?

2. At constant pressure, a student needed to decrease a volume of 155 mL of Ne gas by 32.0%. To what temperature, (in oC), must the gas be cooled if the initial temperature was 21oC?

3. A sample of CO2 gas has a volume of 125.0 L at a pressure of 789 torr and a temperature of 30oC. What will be the temperature if the pressure was increased to 900 torr & the volume decreased to 95.0 L?

4. F2 gas, which is dangerously reactive, is shipped in steel containers of 30.0 L capacity, at a pressure of 10.0 atm at 26.0 oC. What should be the volume of the tank if the pressure is increased to 820.0 torr & the temperature is 43.0 oC?


ad