1 / 18

Földrajzi összefüggések elemzése

Földrajzi összefüggések elemzése. dr. Jeney László egyetemi adjunktus jeney@caesar.elte.hu. Regionális és környezeti elemzési módszerek I. BME Regionális és környezeti gazdaságtan mesterszak (MSc) 2013/2014, II. félév BCE Gazdaságföldrajz és Jövőkutatás Tanszék. Korreláció. 2.

valmai
Download Presentation

Földrajzi összefüggések elemzése

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Földrajzi összefüggések elemzése dr. Jeney László egyetemi adjunktus jeney@caesar.elte.hu Regionális és környezeti elemzési módszerek I. BME Regionális és környezeti gazdaságtan mesterszak (MSc) 2013/2014, II. félév BCE Gazdaságföldrajz és Jövőkutatás Tanszék

  2. Korreláció 2

  3. Társadalmi jelenségek együttmozgása Tagoltság vizsgálata: szinte sohasem szűkül le egy-egy jelenség (mutatószám) térbeli eloszlásának elemzésére Már a fajlagos adatok egyenlőtlenségeinek mérésekor is 2 jelenséget kapcsolunk össze Térbeli együttmozgások elemzése: kifejezetten területi kölcsönhatások (néha ok-okozati kapcsolatok) is megjelennek Összefüggések mérése: korreláció- és regressziószámítás Erősség: milyen erős az összefüggés Irány: egyenes (+) vagy fordított (–) arányosság 3

  4. Szignifikancia Megbízható (szignifikáns) összefüggés: ha viszonylag nagy elemszámú mintából, hosszú adatsorból számítjuk Erős szignifikancia: megfigyelési egységek körét véletlenszerűen újabbakkal bővítve, nagy valószínűséggel nem változik az összefüggés iránya és szorossága Meghatározza: Elemszámtól (1000 vagy 10 területi egységre mérünk) Kapcsolat szorossági szintje (korreláció absz. 0,9 vagy 0) Szignifikancia-tesztek: pl. SPSS 4

  5. Korreláció Jelzőszámok közötti kapcsolat szorosságának meghatározására szolgáló eljárás (egyfajta sajátos egyenlőtlenségi mutató Egy mutatószámmal (r): korrelációs együttható Korreláció típusai területi elemzésekben Lineáris korreláció azonos megfigyelési egységekre vonatkozó két adatsor között Autokorreláció Keresztkorreláció Ugyanígy lehet autoregresszió és keresztregresszió is Értékkészlete: –1 ≤ r ≤ 1 Mértékegysége nincs Súlyozás problémája a korrelációszámításban 5

  6. Lineáris korreláció Lineáris korreláció azonos megfigyelési egységekre vonatkozó két adatsor között r = corr (xiyi) Legismertebb: Pearson-féle korrelációs együttható Egyfajta sajátos egyenlőtlenségi mutató 6

  7. A korrelációs-együtthatók értékeinek értelmezése 7

  8. Lineáris korrelációs együtthatók Pearson-féle lineáris korreláció együttható Excel  fx= KORREL() Angol nyelvű Excel  fx= CORREL() Spearman-féle rangkorreláció Ordinális (sorrendi) adatskála esetén di: összetartozó rangszámok különbségei 8

  9. Korrelációs mátrix f(x) függvényvarázsló segítségével számítható a mátrixban szereplő adatsorok egymás mellé rendezése úgy, hogy üres oszlop és egyéb adat ne legyen benne! mátrix keretének elkészítése a fejléc átmásolása vízszintesen és függőlegesen, a bal fölső cella üres) minden sorból egy korrelációs együttható kiszámítása, a sorban állandó jelzőszám tömbjének betűjeli lerögzítendők! (további egyszerűsítés is végezhető, de teljesen automatikusan nem lehet kitölteni minden cellát!) ellenőrzés: átlóban 1-esek szerepelnek, a mátrix az átlóra szimmetrikus 9

  10. Autokorreláció Egyazon adatsor különböző (időben eltolt vagy térben szomszédos) megfigyelési egységekre vonatkozó értékei közötti kapcsolat Időbeni autokorreláció: minden i-edik időponthoz tartozó xi értékhez ugyanezen x változónak egy k évvel eltolt (k évvel korábbi) adatát rendelve számítjuk  adatsor hossza k évvel csökken r = corr (xixi–k) Területi autokorreláció: i-edik megfigyelési területegység xi adatához a vele szomszédos területegységek értékeit (átlagát) számítjuk r = corr (xixs(i)) 10

  11. Keresztkorreláció Két adatsor különböző (időben eltolt vagy térben szomszédos) megfigyelési egységekre vonatkozó értékei közötti kapcsolat Időbeli keresztkorreláció r = corr (xiyi–k) Területi keresztkorreláció r = corr (xiys(i)) 11

  12. Regresszió-elemzés

  13. Regressziószámítás a regionális elemzésekben Változókapcsolatokat valószínűségi (sztochasztikus) függvénykapcsolatként értelmezi Függő és független (vagy magyarázó) változók Független: x tengely, fajlagos mutató nevezője, bal oszlop Függő: y tengely, fajlagos mutató számlálója, jobb oszlop Típusai: Lineáris vagy nem lineáris Két- vagy többváltozós Alkalmas becslésre, előrejelzésre 13

  14. Kétváltozós lineáris regresszió y = a + bx x: magyarázó (független) változó b: regressziós együttható (regressziós koefficiens): az egyenes meredekségét vagy dőlését jelöli (az x értékének egységnyi növekedése y értékének mekkora mértékű és milyen irányú változását vonja maga után a: regressziós állandó (konstans): értéke megegyezik az egyenes y tengelyen tapasztalt metszéspontjával (a értéke egyenlő y értékével x=0 helyen) y: a függő változó regressziós egyenlet alapján becsült értéke Determinációs együttható (R2) itt a Pearson-féle lineáris korrelációs együttható négyzete 14

  15. Kétváltozós lineáris regresszó számítása Excelben a két adatsor egymás mellé rendezése úgy, hogy a bal oldalon az x tengelyre kerülő változó legyen. szórásdiagram készítése (pontdiagram) formázási műveletek jobb klikk valamely pontra: trendvonal felvétele egyenlet és r négyzet látszik számítás 15

  16. Kétváltozós lineáris regressziós összefüggések 16

  17. Nem lineáris összefüggések Nem lineáris regressziós egyenletek alaptípusai Logaritmikus: y = a + (b*lnx) Polinomiális: y = a + (b1*x) + (b2*x2) + … + (bn*xn) Exponenciális y = a*bx Hiperbolikus y =a +b/x Hatványkitevős y = a*xb Determináció együttható (R2)dönti el, melyik írja le legjobban az adott összefüggést Azt a trendvonaltípust érdemes választani, amelynél magasabb az R2 értéke Elemzésük és értelmezésük nehézkesebb, mint a lineáris egyenleteké Idősorok elemzésénél, trendszámításban gyakrabban használják mint a területi adatok keresztmetszeti vizsgálatában 17

  18. Nem lineáris összefüggések Nem lineáris regressziós egyenletek alaptípusai Logaritmikus: y = a + (b*lnx) Polinomiális: y = a + (b1*x) + (b2*x2) + … + (bn*xn) Exponenciális y = a*bx Hiperbolikus y =a +b/x Hatványkitevős y = a*xb Determináció együttható dönti el, melyik írja le legjobban az adott öszefüggést Elemzésük és értelmezésük nehézkesebb, mint a lineáris egyenleteké Idősorok elemzésénél, trendszámításban gyakrabban használják mint a területi adatok keresztmetszeti vizsgálatában 18

More Related