Create Presentation
Download Presentation

Gas Laws: Introduction At the conclusion of our time together, you should be able to:

Gas Laws: Introduction At the conclusion of our time together, you should be able to:

90 Views

Download Presentation
Download Presentation
## Gas Laws: Introduction At the conclusion of our time together, you should be able to:

- - - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - - -

**Gas Laws: IntroductionAt the conclusion of our time**together, you should be able to: List 5 properties of gases Identify the various parts of the kinetic molecular theory Define pressure Convert pressure into 3 different units Define temperature Convert a temperature to Kelvin**Importance of Gases**• Airbags fill with N2 gas in an accident. • Gas is generated by the decomposition of sodium azide, NaN3. • 2 NaN3 ---> 2 Na + 3 N2**General Properties of Gases**• There is a lot of “free” space in a gas. • Gases can be expanded infinitely. • Gases fill containers uniformly and completely. • Gases diffuse and mix rapidly.**To Review**• Gases expand to fill their containers • Gases are fluid – they flow • Gases have low density • 1/1000 the density of the equivalent liquid or solid • Gases are compressible • Gases effuse and diffuse**Properties of Gases**Gas properties can be modeled using math. This model depends on — • V = volume of the gas (L) • T = temperature (K) • ALL temperatures in the entire unit MUST be in Kelvin!!! No Exceptions! • n = amount (moles) • P = pressure (atmospheres)**Ideal Gases**Ideal gases are imaginary gases that perfectly fit all of the assumptions of the kinetic molecular theory. • Gases consist of tiny particles that are far apart relative to their size. • Collisions between gas particles and between particles and the walls of the container are elastic collisions • No kinetic energy is lost in elastic collisions**Ideal Gases (continued)**• Gas particles are in constant, rapid motion. They therefore possess kinetic energy, the energy of motion • There are no forces of attraction between gas particles • The average kinetic energy of gas particles • depends on temperature, not on the identity of the particle.**Pressure**• Is caused by the collisions of molecules with the walls of a container • Is equal to force/unit area • SI units = Newton/meter2 = 1 Pascal (Pa) • 1 atmosphere = 101.325 kPa (kilopascal) • 1 atmosphere = 1 atm = 760 mm Hg = 760 torr • 1 atm = 29.92 in Hg = 14.7 psi = 0.987 bar = 10 m column of water.**Measuring Pressure**The first device for measuring atmospheric pressure was developed by Evangelista Torricelli during the 17th century. The device was called a “barometer” • Baro = weight • Meter = measure**An Early Barometer**The normal pressure due to the atmosphere at sea level can support a column of mercury that is 760 mm high.**Pressure**Column height measures Pressure of atmosphere • 1 standard atmosphere (atm) * = 760 mm Hg (or torr) * = 29.92 inches Hg * = 14.7 pounds/in2 (psi) = 101.325 kPa (SI unit is PASCAL)**Let’s Review:**Standard Temperature and Pressure“STP” • Allows us to compare amounts of different gases by converting them all to STP (the same temperature and pressure conditions) • P= 1 atmosphere, 760 torr • T= 0°C, 273 Kelvin • The molar volume of an ideal gas is 22.42 liters at STP**Pressure Conversions**A. What is 475 mm Hg expressed in atm? B. The pressure of a tire is measured as 29.4 psi. What is this pressure in mm Hg? 1 atm 760 mm Hg 475 mm Hg x = 0.625 atm 760 mm Hg 14.7 psi 29.4 psi x = 1520 mm Hg**Pressure Conversions – Your Turn**A. What is 2.00 atm expressed in torr? B. The pressure of a tire is measured as 32.0 psi. What is this pressure in kPa? 760 torr 1 atm 2.00 atm x = 1520 torr 101.325 kPa 14.7 psi 32.0 psi x = 221 kPa**Converting Celsius to Kelvin**Gas law problems involving temperature require that the temperature be in KELVINS! Kelvins = C + 273 °C = Kelvins - 273 Don’t use temp. when determining sig. figs. for your answer**Charles’ Law**If n and P are constant, then V α T V and T are directly proportional. • If one temperature goes up, the volume goes up! Jacques Charles (1746-1823). Isolated boron and studied gases. Balloonist.**Gay-Lussac’s Law**If n and V are constant, then P α T P and T are directly proportional. • If one temperature goes up, the pressure goes up! Joseph Louis Gay-Lussac (1778-1850)**Boyle’s Law**P α 1/V This means Pressure and Volume are INVERSELY PROPORTIONAL if moles and temperature are constant (do not change). For example, P goes up as V goes down. Robert Boyle (1627-1691). Son of Earl of Cork, Ireland.**Boyle’s Law Example**A bicycle pump is a good example of Boyle’s law. As the volume of the air trapped in the pump is reduced, its pressure goes up, and air is forced into the tire.**Now let’s put all 3 laws together into one big combined**gas law…….**Combined Gas Law (for a fixed amount, moles, of gas)**• The good news is that you don’t have to remember all three gas laws! Since they are all related to each other, we can combine them into a single equation. BE SURE YOU KNOW THIS EQUATION! (if a variable is not given in the problem, just leave it out)**Combined Gas Law Problem**A sample of helium gas has a volume of 0.180 L, a pressure of 0.800 atm and a temperature of 29°C. What is the new temperature(°C) of the gas at a volume of 90.0 mL and a pressure of 3.20 atm? Set up Data Table P1 = 0.800 atm V1 = 180 mLT1 = 302 K P2 = 3.20 atmV2 = 90 mLT2 = ??**Calculation**• P1 = 0.800 atm V1 = 180 mL T1 = 302 K • P2 = 3.20 atm V2 = 90 mL T2 = ?? P1 V1 P2 V2 = T1 T2 Solving for T2 = 604 K T2 = 604 K - 273 = 331 °C**Gas Laws: Avogadro’s and IdealAt the conclusion of our**time together, you should be able to: Describe Avogadro’s Law with a formula. Use Avogadro’s Law to determine either moles or volume Describe the Ideal Gas Law with a formula. Use the Ideal Gas Law to determine either moles, pressure, temperature or volume Explain the Kinetic Molecular Theory**twice as many molecules**Avogadro’s Law Equal volumes of gases at the same T and P have the same number of molecules. V and n are directly related.**Avogadro’s Law Summary**• For a gas at constant temperature and pressure, the volume is directly proportional to the number of moles of gas (at low pressures). V1 V2 n1 n2**Standard Molar Volume**Equal volumes of all gases at the same temperature and pressure contain the same number of molecules. - Amedeo Avogadro**Avogadro’s Law Practice #1**V1 V2 n1 n2 4.00 L 7.12 L 0.21 mol n2 0.37 mol total 0.16 mol added**Ultimate Comined Gas Law(include Aavogadro’s law in the**combined gas law) The relationship between T, P, n, and V for a gas is a constant which we call the ideal gas constant, R (=0.08206 L atm/ mole K). So we can can set one side as equal to R (the gas constant) and it is now called the ideal gas law.**IDEAL GAS LAW**P V = n R T Brings together gas properties. Can be derived from experiment and theory. BE SURE YOU KNOW THIS EQUATION!**Ideal Gas Law**• PV = nRT • P = pressure inatm(you may need to convert) • V = volume in liters • n = moles • R = proportionality constant • = 0.08206 L atm/ mol·K • T = temperature in Kelvin**R is a constant, called the Ideal Gas Constant**Instead of learning a different value for R for all the possible unit combinations, we can just memorize one value and convert the units to match R. R = 0.08206 L • atm mol • K**Using PV = nRT**How much N2 is required to fill a small room with a volume of 960 cubic feet (27,000 L) to 745 mm Hg at 25 oC? Solution 1. Get all data into proper units V = 27,000 L T = 25 oC + 273 = 298 K P = 745 mm Hg (1 atm/760 mm Hg) = 0.98 atm And we always know R, 0.08206 L atm / mol K**Using PV = nRT**How much N2 is required to fill a small room with a volume of 960 cubic feet (27,000 L) to P = 745 mm Hg at 25 oC? Solution 2. Now plug in those values and solve for the unknown. PV = nRT RT RT n = 1.1 x 103 mol (or about 30 kg of gas)**Ideal Gas Law Problems #1**Using PV = nRT (5.6 atm) (12 L) (4 mol) (0.08206 atm*L/mol*K) (T) 200 K**Gas Laws: Dalton’s LawAt the conclusion of our time**together, you should be able to: Explain Dalton’s Law Use Dalton’s Law to solve a problem**Dalton’s Law**John Dalton 1766-1844**Dalton’s Law of Partial Pressures**• For a mixture of gases in a container, • PTotal = P1 + P2 + P3 + . . . This is particularly useful in calculating the pressure of gases collected over water.**Dalton’s Law of Partial Pressures**• 2 H2O2 (l) ---> 2 H2O (g) + O2 (g) • 0.32 atm 0.16 atm What is the total pressure in the flask? Ptotal in gas mixture = PA + PB + ... Therefore, Ptotal = PH2O + PO2 = 0.48 atm Dalton’s Law: total P is sum of PARTIAL pressures.**Gases in the Air**The % of gases in air Partial pressure (STP) 78.08% N2 593.4 mm Hg 20.95% O2 159.2 mm Hg 0.94% Ar 7.1 mm Hg 0.03% CO2 0.2 mm Hg PAIR = PN + PO + PAr + PCO = 760 mm Hg 2 2 2 Total Pressure = 760 mm Hg**Collecting a gas “over water”**• Gases, since they mix with other gases readily, must be collected in an environment where mixing can not occur. The easiest way to do this is under water because water displaces the air. So when a gas is collected “over water”, that means the container is filled with water and the gas is bubbled through the water into the container. Thus, the pressure inside the container is from the gas AND the water vapor. This is where Dalton’s Law of Partial Pressures becomes useful.**Solve This!**A student collects some hydrogen gas over water at 20 degrees C and 768 torr. What is the pressure of the H2 gas? 768 torr – 17.5 torr = 750.5 torr**Dalton’s Law of Partial Pressures**• Also, for a mixture of gases in a container, because P, V and n are directly proportional if the other gas law variables are kept constant: • nTotal= n1+ n2+ n3+ . . . • VTotal = V1 + V2 + V3 + . . . This is useful in solving problems with differing numbers of moles or volumes of the gases that are mixed together.**Gas Laws: Gas StoichiometryAt the conclusion of our time**together, you should be able to: Use the Ideal Gas Law to solve a gas stoichiometry problem.**Gases and Stoichiometry**2 H2O2 (l) ---> 2 H2O (g) + O2 (g) Decompose 1.1 g of H2O2 in a flask with a volume of 2.50 L. What is the volume of O2 at STP? Bombardier beetle uses decomposition of hydrogen peroxide to defend itself.**Gases and Stoichiometry**2 H2O2 (l) ---> 2 H2O (g) + O2 (g) Decompose 1.1 g of H2O2 in a flask with a volume of 2.50 L. What is the volume of O2 at STP? Solution 1.1 gH2O2 1 mol H2O2 1 mol O2 22.4 L O2 34 g H2O2 2 mol H2O2 1 mol O2 = 0.36 L O2 at STP**x 4.00 g He**1 mol He x 1 mol He 22.4 L He Gas Stoichiometry: Practice! How many grams of He are present in 8.0 L of gas at STP? 8.0 L He = 1.4 g He