370 likes | 462 Views
ELEC 5270-001/6270-001 (Fall 2006) Low-Power Design of Electronic Circuits (ELEC 5970/6970) Low Voltage Low Power Devices. Vishwani D. Agrawal James J. Danaher Professor Department of Electrical and Computer Engineering Auburn University http://www.eng.auburn.edu/~vagrawal
E N D
ELEC 5270-001/6270-001 (Fall 2006)Low-Power Design of Electronic Circuits(ELEC 5970/6970) Low Voltage Low Power Devices Vishwani D. Agrawal James J. Danaher Professor Department of Electrical and Computer Engineering Auburn University http://www.eng.auburn.edu/~vagrawal vagrawal@eng.auburn.edu ELEC5270-001/6270-001 Lecture 3
Capacitances VDD C1 In Out C2 CW GND ELEC5270-001/6270-001 Lecture 3
Miller Capacitance VDD C1 In Out CM C2 CW GND ELEC5270-001/6270-001 Lecture 3
Before Transition VDD C1 +VDD 0 In Out CM C2 CW GND ELEC5270-001/6270-001 Lecture 3
After Transition VDD Energy from supply = 2 CM VDD2 Effective capacitance = 2 CM from pullup devices of previous gate C1 -VDD 0 In Out CM C2 CW GND ELEC5270-001/6270-001 Lecture 3
Capacitances in MOSFET Cgs Cgd Gate Gate oxide Source Drain Cg Cd Cs Bulk ELEC5270-001/6270-001 Lecture 3
Bulk nMOSFET Polysilicon Gate Drain W Source n+ n+ L p-type body (bulk) SiO2 Thickness = tox ELEC5270-001/6270-001 Lecture 3
Gate Capacitance Cg = Cox WL = C0, intrinsic cap. Cg = Cpermicron W εox Cpermicron = Cox L = ── L tox where εox=3.9ε0 for Silicon dioxide = 3.9×8.85×10-14 F/cm ELEC5270-001/6270-001 Lecture 3
Intrinsic Capacitances Weste and Harris, CMOS VLSI Design, Addison-Wesley, 2005, p. 78. ELEC5270-001/6270-001 Lecture 3
Low-Power Transistors • Device scaling to reduce capacitance and voltage. • Body bias to reduce threshold voltage and leakage. • Multiple threshold CMOS (MTCMOS). • Silicon on insulator (SOI) ELEC5270-001/6270-001 Lecture 3
Device Scaling • Reduced dimensions • Reduce supply voltage • Reduce capacitances • Reduce delay • Increase leakage due to reduced VDD / Vth ELEC5270-001/6270-001 Lecture 3
A Simplistic View • Assume: • Dynamic power dominates • Power reduces as square of supply voltage; should reduce with device scaling • Power reduced linearly with capacitance; should reduce with device scaling • Delay is proportional to RC time constant; R is constant with scaling, RC should reduce • Power reduces with scaling ELEC5270-001/6270-001 Lecture 3
Simplistic View (Continued) • What if voltage is further reduced below the constant electric field value? • Will power continue to reduce? Yes. • Since RC is independent of voltage, can clock rate remain unchanged? • Answer to last question: • Yes, if threshold voltage was zero. • No, in reality. Because higher threshold voltage will delay the beginning of capacitor charging/discharging. ELEC5270-001/6270-001 Lecture 3
Consider Delay of Inverter VDD R In Out C t B t B Charging of C begins GND ELEC5270-001/6270-001 Lecture 3
Idealized Input and Output t f VDD Vth INPUT 0.5VDD tB = tfVth /VDD Gate delay 0.5VDD OUTPUT time tB 0.69CR ELEC5270-001/6270-001 Lecture 3
Gate Delay For VDD>Vth Gate delay = (tfVth/VDD) + 0.69RC – 0.5 tf = tf (Vth/VDD– 0.5 ) + 0.69RC For VDD≤Vth Gate delay = ∞ ELEC5270-001/6270-001 Lecture 3
Approx. Gate Delay vs. VDD Gate delay 0.5t f 0.69RC 0.5t f 0 1 2 3 4 5 VDD/Vth ELEC5270-001/6270-001 Lecture 3
Power - Delay vs. VDD Gate delay 0.5t f Power 0.69RC With leakage 0.5t f 0 1 2 3 4 5 VDD/Vth ELEC5270-001/6270-001 Lecture 3
Optimum Threshold Voltage Vth = 0.7V Vth = 0.3V Delay Delay or Energy-delay product Energy-delay product 0 1 2 3 4 5 6 • VDD / Vth ELEC5270-001/6270-001 Lecture 3
Bulk nMOSFET Polysilicon Vgs Vgd Gate Drain Source W n+ n+ L p-type body (bulk) SiO2 Thickness = tox ELEC5270-001/6270-001 Lecture 3
Transistor in Cut-Off State Polysilicon gate SiO2 p-type body - - - - - - - - - - - - - - - - - - + - + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + Vg < 0 ELEC5270-001/6270-001 Lecture 3
Threshold Voltage, Vth Polysilicon gate SiO2 p-type body + + + + + + + + + + + - Depletion region 0 < Vg < Vth + + + + + + + + + + + + + + + + + + + + + + + + + + Vth is a function of: Dopant concentration, Thickness of oxide Polysilicon gate SiO2 p-type body + + + + + + + + + + + + + + - • - - - - - - - - - - - - - - - - - - • Depletion region • + + + + + + + + + + + + + • + + + + + + ++ + + + + + Vg > Vth ELEC5270-001/6270-001 Lecture 3
α-Power Law Model Vgs > Vth and Vds > Vdsat = Vgs – Vth (Saturation region): β Ids = Pc ─ (Vgs – Vth)α 2 where β = μCoxW/L, μ = mobility For fully ON transistor, Vgs = Vds = VDD: β Idsat = Pc ─ (VDD – Vth)α 2 T. Sakurai and A. R. Newton, “Alpha-Power Law MOSFET Model and Its Applications to CMOS Inverter Delay and Other Formulas,” IEEE J. Solid State Circuits, vol. 25, no. 2, pp. 584-594, 1990. ELEC5270-001/6270-001 Lecture 3
α-Power Law Model (Cont.) 400 300 200 100 0 Shockley α-power law Simulation Idsat Ids (μA) Vgs = 1.8V 0 0.3 0.6 0.9 1.2 1.5 1.8 Vds ELEC5270-001/6270-001 Lecture 3
α-Power Law Model (Cont.) 0 Vgs < Vthcutoff Ids = Idsat×Vds/Vdsat Vds < Vdsatlinear Idsat Vds > Vdsatsaturation Vdsat = Pv (Vgs – Vth)α/2 ELEC5270-001/6270-001 Lecture 3
α-Power Law Model (Cont.) • α = 2, for long channel devices or low VDD • α ~ 1, for short channel devices ELEC5270-001/6270-001 Lecture 3
Power and Delay Power = CVDD2 CVDD 1 1 Inverter delay = ──── (─── + ─── ) 4 Idsatn Idsatp KVDD = ─────── (VDD – Vth)α ELEC5270-001/6270-001 Lecture 3
Power-Delay Product VDD3 Power × Delay = constant × ─────── (VDD – Vth)α Power Delay 0.6V 1.8V 3.0V VDD ELEC5270-001/6270-001 Lecture 3
Optimum Threshold Voltage For minimum power-delay product: 3Vth VDD = ─── 3 – α For long channel devices, α = 2, VDD = 3Vth For very short channel devices, α = 1, VDD = 1.5Vth ELEC5270-001/6270-001 Lecture 3
Leakage VDD IG Ground R n+ n+ Isub IPT ID IGIDL ELEC5270-001/6270-001 Lecture 3
Leakage Current Components • Subthreshold conduction, Isub • Reverse bias pn junction conduction, ID • Gate induced drain leakage, IGIDL due to tunneling at the gate-drain overlap • Drain source punchthrough, IPT due to short channel and high drain-source voltage • Gate tunneling, IGthrough thin oxide ELEC5270-001/6270-001 Lecture 3
Subthreshold Leakage Vgs – Vth Isub = I0 exp( ───── ) nvth Ids 1mA 100μA 10μA 1μA 100nA 10nA 1nA 100pA 10pA Saturation region Subthreshold region Vth 0 0.3 0.6 0.9 1.2 1.5 1.8 V Vgs ELEC5270-001/6270-001 Lecture 3
Normal CMOS Inverter VDD o output input GND SiO2 Polysilicon (input) output GND VDD metal 1 p+ n+ p+ p+ n+ n+ n-well p-substrate (bulk) ELEC5270-001/6270-001 Lecture 3
Leakage Reduction by Body Bias VBBp VDD o output input GND VBBn SiO2 Polysilicon (input) VBBn VBBp VDD output GND metal 1 p+ n+ p+ p+ n+ n+ n-well p-substrate (bulk) ELEC5270-001/6270-001 Lecture 3
Body Bias, VBBn Polysilicon gate SiO2 p-type body + + + + + + + + + + + - Depletion region 0 < Vg < Vth + + + + + + + + + + + + + + + + + + + + + + + + + + Vt is a function of: Dopant concentration, Thickness of oxide Polysilicon gate SiO2 p-type body - - - - - - - - - - - - - - - - - - + - + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ + + + + + Vg < 0 ELEC5270-001/6270-001 Lecture 3
Further on Body Bias • Large body bias can increase gate leakage (IG) via tunneling through oxide. • Body bias is kept less than 0.5V. • For VDD = 1.8V • VBBn = - 0.4V • VBBp = 2.2V ELEC5270-001/6270-001 Lecture 3
Summary • Device scaling down reduces supply voltage • Reduced power • Increases delay • Optimum power-delay product by scaling down threshold voltage • Threshold voltage reduction increases subthreshold leakage power • Use body bias to reduce subthreshold leakage • Body bias may increase gate leakage ELEC5270-001/6270-001 Lecture 3