1 / 11

平面与平面平行

平面与平面平行. 定义:如果两个平面没有公共点,那么这 两个平面互相平行,也叫做平行平面. 平面 α 平行于平面 β ,记作 α∥β. D 1. C 1. E. A 1. B 1. D. C. F. B. A. 思考. ( 1 )平面 β 内有一条直线与平面 α 平行, α , β 平行吗?. ( 2 )平面 β 内有两条直线与平面 α 平行, α , β 平行吗?. ∥. ∥. ∥. a. b. P. c. d. 平面与平面平行的 判定定理. 一个平面内的两条相交直线与另一个平面平行,则这两个平面平行。.

turner
Download Presentation

平面与平面平行

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. 平面与平面平行

  2. 定义:如果两个平面没有公共点,那么这 两个平面互相平行,也叫做平行平面 平面α平行于平面β,记作α∥β

  3. D1 C1 E A1 B1 D C F B A 思考 (1)平面β内有一条直线与平面α平行,α,β平行吗? (2)平面β内有两条直线与平面α平行,α,β平行吗?

  4. ∥ ∥ a b P c d 平面与平面平行的判定定理 一个平面内的两条相交直线与另一个平面平行,则这两个平面平行。 定理的推论 如果一个平面内有两条相交直线分别平行于 另一个平面内的两条直线,那么这两个平面平行 β α

  5. 练习: a∥γ b∥γ a∥c b∥c ① ② 1)α、β、γ为三个不重合的平面,a,b,c为三条不同直线,则有一下列命题,不正确的是 a∥b a∥b α∥c β∥c α∥γ β∥γ ③ ④ α∥β α∥β α∥c a∥c α∥γ a∥γ a∥α ⑤ ⑥ α∥a

  6. 例题分析 ∥ ∥ = = C1 A1 B1 C A B 例1、如图:A、B、C为不在同一直线上的 三点,AA1 BB1 CC1 求证:平面ABC//平面A1B1C1

  7. 例2、已知正方体ABCD-A1B1C1D1,求证:平面AB1D1∥平面C1BD。例2、已知正方体ABCD-A1B1C1D1,求证:平面AB1D1∥平面C1BD。

  8. 练习: D1 C1 A1 B1 D C A B 2、棱长为a的正方体AC1中,设M、N、E、F分别为棱A1B1、A1D1、 C1D1、 B1C1的中点. (1)求证:E、F、B、D四点共面; E (2)求证:面AMN∥面EFBD. N F M

  9. 小结: 1、直线和平面平行的定义 2、直线和平面平行的判定 定理:平面外的一条直线和平面内的一 条直线平行,则该直线和这个平面平行。 内外线线平行则线面平行 简记为: 作用:判断或证明线面平行时 关键:在平面内找(或作)一条直线与 面外的直线平行

  10. 小结 平面与平面平行的判定定理 一个平面内的两条相交直线与另一个平面平行,则这两个平面平行。 定理的推论 如果一个平面内有两条相交直线分别平行于 另一个平面内的两条直线,那么这两个平面平行

  11. 作业:

More Related