1 / 34

第6章 波の平均流への作用

そして運動のエネルギーと     … .. 質も形も進度も位置も時間も みな因縁が ….  <−これまで波は線形で一般風(平均流)を基本の状態とした。 ー>重力波の作用(働き)の話し。線形の波が、基本の流れを変形する(作用を及ぼす)。それが大気中で興味ある現象を引き起こす。. 第6章 波の平均流への作用. 6−1: Eliassen-Palm の定理(1). *流体は準−ブシネスク流体   *2次元の長波の内部重力波に対する方程式。

Download Presentation

第6章 波の平均流への作用

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. そして運動のエネルギーと    ….. 質も形も進度も位置も時間も みな因縁が…  <−これまで波は線形で一般風(平均流)を基本の状態とした。 ー>重力波の作用(働き)の話し。線形の波が、基本の流れを変形する(作用を及ぼす)。それが大気中で興味ある現象を引き起こす。 第6章 波の平均流への作用 6−1:Eliassen-Palmの定理(1) *流体は準−ブシネスク流体   *2次元の長波の内部重力波に対する方程式。  上の名前の定理を述べる。それは波に伴うエネルギー・フラックスと運動量フラックスとの関係です。前章で述べたように東西方向の線形の運動方程式は、 (1) ここで 定常な波(一定の位相速度をもち、波の振幅は変化しない)を考え、以下の波形のような、きれいな波を仮定する   < −実際はきれいな波は少ないと思う: すると(1)式は (2) 鉛直方向の運動方程式は静力学平衡の近似(3) 連続の式として (4) 熱力学の方程式は(3)を用いて (5) 以上が定常な波にたいする線形波動方程式である(散逸などはない)。 次に(2)式を以下のように変形する。  線形の式を変形して波の2次の量を評価すること。 (6) ここで u0は高さのみの関数として偏微分を全微分に置き換えた。この式に左辺の第一項のx の偏微分の中の変数を左から掛けると (7)

  2.  波の2次の量のうち、これからは東西に平均した量を議論する。そこで上式に、東西方向に一波長( Lx = 2 π / k )の平均操作を適用してみる。式で書けば そして一波長の平均操作を over barで表す。  波の一次の量の1波長の平均はゼロになるが積の1波長の平均は一般的にはゼロにはならない。例えばcos k x の1波長平均はゼロだが、cos 2 kx の1波長平均はゼロではない。 一般に なので、(7)式に平均操作をすることにより以下の式が導かれる。 (8) Lindzen(1990)によると、これが Eliassen-Palm の第一定理と呼ばれる(波に伴うエネルギー・フラックス(左辺、次節参照)と運動量フラックス(右辺のu とw の相関、uという運動量が鉛直に流れるとして)の関係を示すものを第一定理としている、1章に出ていた項)。ただし、非粘性の線形定常波で位相速度がはっきりした波についての関係式。 図にGFDLの大循環モデルで得られた重力波に伴う運動量フラックスの緯度−高度断面図を示す。成層圏中緯度の東風のところで運動量フラックスは正、西風のところで負になっている(以下で大事)。赤道の成層圏では正になっている。 ただし、これは全ての擾乱成分であり非定常部分も含む。 西風 東風 負 正 図:重力波に伴う運動量フラックス。GFDL-GCMの結果で左が平均東西風で右がそのときの運動量フラックス。Miyahara et al. (1986)より。ただし物理量は

  3.  波のエネルギー方程式を導く。前節と同様に定常の波を仮定する。ここでは南北方向も考慮する。普通のエネルギー方程式の導出と同様に東西方向の式にu’を掛け、南北方向の式にv’をかけて足すと(南北シアーもあり)、 波のエネルギー方程式を導く。前節と同様に定常の波を仮定する。ここでは南北方向も考慮する。普通のエネルギー方程式の導出と同様に東西方向の式にu’を掛け、南北方向の式にv’をかけて足すと(南北シアーもあり)、 (9) 6−2:波のエネルギー方程式について 次に熱力学の方程式から(南北温度差あり) (10) この式に を掛けて (11) (9)と(11)を足して (12) 連続の式(13)を使って (14) (14)が波のエネルギー方程式である。x の偏微分の中の第1、2項と第3項は波の運動エネルギーとPotential エネルギーに対応している。第2項は圧力と東西方向の速度の積であるが圧力によってなされる仕事を示している(ランダウの流体力学6節参照)。第5、6、7項は基本場から(または基本場へ)のエネルギー変換を表している。第4項は圧力によってなされる鉛直方向の仕事を示している。

  4. 静力学平衡を仮定しているので鉛直方向の運動エネルギーが、また音波を落としているので弾性エネルギーが(14)にはない。静力学平衡を仮定しているので鉛直方向の運動エネルギーが、また音波を落としているので弾性エネルギーが(14)にはない。 例えば、重力波に伴うPotential Energyとして、 の図(Tsuda et al., 2000, J. G. R. )。5月から8月の平均で、高度は20-30kmの領域での全休分布である。赤いところが重力波のPotential Energy の高いところ。Global Positioning System データから得られたもの。 5-8月のOLR図:対流の強さの指標である。大西洋のPotential Energyの大きいところは強い対流とずれている。 GCMを用いた実験での短周期重力波に伴うPEの図:大西洋に重力波にともなうPotential Energyの大きなところがある(20-30kmの高度)。これは6月の結果 18-25kmでの重力波の全エネルギーの時間的変化、Vincent and Alexander, JGR, 2000, 場所はCoros Islands (12S, 97E)でのラジオゾンデ観測を解析、wet seasonで大きい

  5. 一般に線形波動として物理量が  波のエネルギー方程式を導いた。次にEliassen-Palmの第二定理を述べよう。東西/鉛直2次元のエネルギーの式に東西に1波長平均の操作を施す。するとx の偏微分の項は消える。残りを書き表すと、 (15) のように表されているとする。ここでAとBは複素数とする。このとき積の量の平均値のみを問題にするときには、 6−3:Eliassen-Palmの定理(2) 前の(8)式は 密度を掛けて 上式をz微分すると、 こめじるしはcomplex conjugateを示す。例えばランダウの電磁気学の45節参照 で、(15)式を用いると、 z u0(z) なので、下の条件をみたすときEliassen-Palmの第二定理が導かれる。 (16) *critical level ( u0 - c = 0 ) がないWKB近似解の場合: WKB近似解が(16)式を満たすことを示しておく。もう一度書き下すと(この波は基本流に対して東に進む波である)、 条件としては、  (i)波が定常であること  (ii)Forcing (例えば thermal forcing )また     は Damping がない  (iii)critical level ( u0 - c = 0 ) がない の条件を満たすときである。

  6.  話しの簡単化のために連続の式としてBoussinesq 近似の連続の式を使い、波は鉛直に平面波的とすれば、 最終的に (17) ここで ρ00は地表面での密度である。Eliassen-Palm の定理が導かれた。 WKB近似解の w' の中の分母に m1/2の factor があったが、物理的にはある種の保存則(Eliassen-Palm の定理)を満たすように摂動の変動が基本流の中でおこっているといっていいであろう。  前章において重力波の critical level の議論をした。その結果を用いて運動量フラックスのとびを計算する(上の条件(iii)の破れの場合である)。下式では密度ファクター(擾乱についてexp(z/2H)で大きくなる項)は落としてある。 z>0で(上)、 + + ー z<0では(下)、 となる。critical levelの上下で差があることに注意 ー> 波が吸収された分の差であることになる。

  7. 線型近似のとき(プライムはおとして議論する)鉛直変位と鉛直流との関係は線型近似のとき(プライムはおとして議論する)鉛直変位と鉛直流との関係は の別の見方: となる.東西に波の形を仮定すれば, となる.これに圧力の変動をかけて1波長の平均をとると, となる.これを式 を使って変形すると, >0の状況 のように表される.  図は位相速度c>0で山を動かしている。 斜の矢羽根は風速をしめしており、  >0の状況。 >0>0のところでは       の式から負になっており(u0=0)、 そのshadeの領域を山の所までもっていったところが      に対応している。 で         の形から        で c>0なので、u>0 のところは p>0 でもあるので、 図のよう に    のところは p>0 のようになっている。 そして式のように    >0 は    のところで山がおしていて圧力>0の状況となっており、ζをhと見なせば山が流体に加える力(圧力の次元)と見做す事が出来る。その圧力が波動として上に伝わる。

  8. ここでは長波の2次元内部重力波について Eliassen-Palm の定理を導いた。この定理は圧縮性の高周波内部重力波についても同様に成り立つ。詳しくは原論文を参照。またstationary(c=0を議論してあるがcがあっても同様)の長い波( f も含む) についても議論されている( Eliassen and Palm, 1961) 。 論文の孫引きですが(p-座標で書いてある) 基本状態としては、 温度風は stationaryな波の式は は安定度をあらわす。 南北、鉛直energy fluxの例:Kawatani et al., GRL, 2003 このとき、右のような式が成り立つ(エネルギーフラックスと運動量フラックスの関係)ー>  これは南北成分も含まれている形になっている。 保存則としては、 がなりたつ。    の中がEliassen-Palm fluxと呼ばれる(南北の成分および熱フラックスを含む形)。

  9. 上に述べた、Eliassen-Palmの定理は非常に特別な場合(定常な波で散逸などがない)に(22)の右辺がゼロになることを示している上に述べた、Eliassen-Palmの定理は非常に特別な場合(定常な波で散逸などがない)に(22)の右辺がゼロになることを示している Eliassen-Palm の定理の一般化(破綻したときはどのようになる?)は Andrews and McIntyre (1976, J. Atmos. Sci. )から:  2次元の回転なしの場合を考える。東西方向の運動方程式は以下のように書かれる。 (18) 6−4:平均東西風(帯状流)の変化について ここで ρ0は高さの関数とする。上の方程式は非線形の方程式である。ここで物理量を1章のように東西平均した量とそれからのずれとして以下のように表す。 (19) 基本となる擾乱の式として(ブシネスク流体近似、β平面、静力学平衡)、 primeのついた量について、線形方程式を議論したのが線形波動の話しであった。 連続の式として以下を用いる。(20) ここで u , w は線形、非線形を問わない。この式を使うと(18)は以下のように変形される(非線形項を運動量フラックスの形に書き直す)。 (21) ここで、 東西平均流の式は以下のように書かれる。 この式に(19)を代入して、その式に東西平均の操作を施すと1章のような式を得ることが出来る。(22) この式により、もし右辺がゼロでなければ東西平均流が変化していくことを示している。はじめ線形の波動方程式を議論していたときは0次の基本場と仮定して線形の波動擾乱を議論していたわけであるが、今や線形の波により基本場が変化していくことがわかる。

  10. の項(Eliassen-Palm flux divergence)の変形から、平均東西流の加速として近似的に以下の式が導かれている。平均東西流の式の*のついた項が小さい近似である(定常で散逸やcritical levelがないときはゼロになる)。 前に述べたEliassen-Palm fluxを見てわかるように、南北熱フラックスが運動量フラックスとからむので、その項を東西風の変化の式にくりこむと、以下の式になる。 Eliassen-Palm flux をpseudo-運動量フラックスと呼ぶこともある。ー>それの収束が東西風の変化に対応。 ここで、   は擾乱に伴う南北変位をあらわし、     で定義される。 波に対しての外力(1項や2項)、transienceの時(3項)、critical level(2、3項)のところで東西風が変化することを示している。  Eliassen-Palmの定理がなりたたない状況で東西風が変化していく。 Richardson数が大きく、赤道β平面のとき、平均東西流の式の右辺:

  11. 中層大気における平均東西風の変動について 西風 赤道域半年振動 中間圏弱風層 東風 赤道 突然昇温、惑星波動による 重力波も関係 赤道域下部成層圏準2年振動

  12. 熱圏下部の平均東西風に大気潮汐波(全球的な重力波)が寄与をしている話がある熱圏下部の平均東西風に大気潮汐波(全球的な重力波)が寄与をしている話がある 平均東西風の緯度ー高度断面図において、下部熱圏に注意してほしい。赤道域で東風が吹いている。 大気中の1日潮汐波(お日さまの加熱と一緒に西に伝播)の非線形効果を計算した結果。赤道域が東風になっている。観測の東風と対応? Miyahara, 1978, J. M. S. J.

  13. この赤道域東西風にedyyによる水平運動量輸送が大事であると言われている。この赤道域東西風にedyyによる水平運動量輸送が大事であると言われている。 金星大気の成層圏における高速の平均東西流に波動による運動量輸送が重要な役割を果たしている。 温度観測から推測による平均東西風 GCMで得られた高速風の実験結果である(Yamamoto and Takahashi, 2002)。赤道域と中緯度域の風がそれほど変わらない。 図は計算で求めた水平edy運動量fluxの緯度—高度断面図

  14. edyyによる水平運動量輸送のスペクトル分布:このモデルではいろいろな波動が関わっている。edyyによる水平運動量輸送のスペクトル分布:このモデルではいろいろな波動が関わっている。 補足:南北流と鉛直流を表す。 赤道域で上昇流であり、極域で下降流となっている。それに対応して極域にむく南北風が吹いている。

  15. 補足2:金星大気での u’w’のスペクトル分布

  16. のようになり基本流が時間とともに変化していく。ここで mi(基本風に依存)は波にDamping が働いた為に出てきた事に注意。またこのとき西風を生成可能。  ここでは、Eliassen-Palmの定理の破れの簡単例として波は定常ではあるが、散逸されつつある場合について述べる。定常で散逸されつつあるのだから、常になにかで強制されている。散逸として同じ係数のRayleigh friction と Newtonian cooling を考えると話しは簡単。またこの散逸は小さいとする。きちんと計算した例は赤道波動について Takahashi and Uryu ( 1981)参照。  そのときたびたびおこなってきたブシネスク近似及びWKB近似を用いれば、鉛直波数m について (23) 6—5:Eliassen-Palmの定理の破れの簡単例 を解いた例:ただし成層のある非圧縮性流体である。1つの東に伝わる波のみを考慮してあり、平均東西風の時間発展の様子をみたものである。Plumb, 1977, J. Atmos. Sci. 図の左は運動量フラックスの時間変化。 となる。ここでの表式において、重力波は基本流に対して東に(またははやく)動いているとしている。ここでk は波の波数であり、a はDampingの係数。また miは正である。このとき上方に伝播する鉛直流及び東西流の解は近似的に以下のように表される。 時間 鉛直座標や時間は無次元化されている。 運動量フラックスは (24) 基本流に対して西向きの波は運動量フラックスは負である。 このとき となり高さの関数。だからこの場合(22)は以下のようにゼロではなくて (25) 東向きの波と西向きの波を両方合わせるとどうなる?->西風と東風で振動しそう

  17. 周期は22ヶ月から34ヶ月と一定ではない。平均の周期は28ヶ月くらい。Plumb(1984)より。周期は22ヶ月から34ヶ月と一定ではない。平均の周期は28ヶ月くらい。Plumb(1984)より。 前節において波が散逸によって潰れつつあるとき東西平均流が変化することを述べた。その典型的な例が赤道域の下部成層圏に存在する準2年振動と考えられている。  ここで幾分詳しく観測結果を述べてみよう(cf.Andrews et al. ,1987)。 6—6:例としての準2年振動 1:西風と東風の繰り返し、上から伝播してくる(どのくらい上からか、40kmくらいか?)。 中間圏QBOが見つかっている。Burrage et al. (1996, J. G. R.) これは対流圏の状態とも関係しているであろう。但しそれほど明確ではない。Maruyama and Tsuneoka ( 1988 )は ENSO と QBO の関係を調べている。ENSO のときケルビン波の活動度が強まり西風の下降が早まっているようだと述べている。(1987のENSOの時,東風の持続が短かったこと)。 中間圏QBO ただし、深い対流(OLRを見る)とは関係ないという論文もある?(Collimore et al., 1998, G. R. L. )

  18. 2:QBOの南北のスケールは1500km程度である。赤道域のみあとで説明あり。2:QBOの南北のスケールは1500km程度である。赤道域のみあとで説明あり。 のようであろうから    は下降流となり、西風shearのとき移流により、はやくQBOは下降する。下図はPlumb and Bellの2Dモデルより。 図:準2年振動の振幅(実線)と位相(破線)の緯度−高度断面図、Wallace(1973)より 4:振幅は40mbから10mbくらいまで20msー1くらいで、その下では急激に小さくなる。100mbでは 2msー1 になってしまう。赤道対流圏にもQBOがある(図参照)。お互いにどのくらい関係しているのかはよくわからない。例えばYasunari (1986 )参照。他の論文によると統計的には関係がないらしい?(Xu, 1992, J. Atmos. Sci. ) 3:下方伝播の速さは約1km/月で西風の伝播の方が幾分速い。これは今の所、子午面循環の違いで説明される。 地衡風近似と静力学平衡からくる温度風の関係と熱力学の式におけるNewton冷却と断熱鉛直運動のバランスの式: から 赤道からすこしはずれると、   が正のとき(西風が高さとともに大きい時)、北半球で  が負だから赤道の方が温度が高い。このとき、熱力学の式から(T’>0として) 赤道対流圏の準2年振動。但し振幅は非常に小さい(1msー1もない)、Yasunari(1986, JMSJ)より。

  19.  5:準2年振動は年振動と関係があるらしいがまだ明確ではない。QBOの西風が下降するとき、季節的振動である半年周期振動の西風(equinoxのとき)と同期しているようでもある(図参照)。 5:準2年振動は年振動と関係があるらしいがまだ明確ではない。QBOの西風が下降するとき、季節的振動である半年周期振動の西風(equinoxのとき)と同期しているようでもある(図参照)。 7:南半球の対流圏に少なくとも2とおりのQBOがある( Trenberth, 1980, J. Atmos. Sci.)、その内の1つは図参照:赤道域から極域の方に位相は伝わっている 。このQBO(500mbの東西平均した東西風)は赤道下部成層圏のQBOと関係はありそう。しかしもう1つの波数3の構造のQBOは赤道下部成層圏のQBOとは関係はないといっている。 半年振動(約48kmの高さ)と準2年振動。Wallace(1973)より。半年振動の西風(shade)と準2年振動の西風がつながっている。 6:QBOは中緯度成層圏に影響を及ぼしている(Holton and Tan, 1980 )。図はQBOが東風のとき、冬の極夜Jetの西風が統計的に弱くなっているGCM数値実験の例。Niwano and Takahashi, 1998, J. M. S. Japan.

  20. QBOは物質変動にも存在する(下の例はオゾンQBOの例をしめす)。Hasebe, 1994, J. Atmos. Sci. QBOはオゾン・ホールとも関係しているらしい?(図参照、Lait et al. (1989) より) 風 Heavy solid: 10月の30S以南の全オゾン、細い実線は50mbの東西風、点線はthickness:西風でオゾンが少ないよう。 中緯度のオゾンQBO(赤道QBOと逆位相) 赤道QBOと中緯度との関係性はすっきりしない。 QBOのreview-paper, Baldwin et al., 2001, Rev. Geophys.

  21.  問題はQBOを生成しているといわれる波動である。赤道下部成層圏Kelvin波の図を思い出して欲しい。準2年振動の西風(上層)が下りてくるときで、周期15日程度の擾乱がある。これは東向きの波で西風運動量をもっており、散逸するとき西風を生成する。Wallace-Kousky wave(1968, J. Atmos. Sci. )と呼ばれ、対流圏で生成された強制赤道ケルビン波といわれる。   ここでは赤道下部成層圏の準2年振動を波と平均流の相互作用の考え方でモデル化してみる。今赤道上のみを取り扱う。東西方向に一様な風(平均流)を支配する運動方程式は(22)を変形した以下の式により表される。 (27) これらが観測された準2年振動のありよう 下端(z=17kmの赤道成層圏の下端におく)、上端(z=45kmとする)の境界条件は (28) とする。下端では、そのままでは風がどんどん変形して困るので最下層のみ2日のDamping timeのレーリー摩擦を入れておく。下端は風速ゼロに固定してもいいのですが。  次に波による運動量フラックスについては東および西に伝播する2つの波動について(24) , (26)式を用いる。但しここでmiの評価についてはこれまでのモデル計算(例えば、Holton and Lindzen, 1972 : Plumb, 1977 )に従いニュートン冷却のみ(Rayleigh friction は入っていない)で波動は減衰すると仮定。このときmiは以下のように表される。 (29) 赤道下部成層圏のケルビン波の時間−高度断面図(上が東西風で下が温度)。1963年の夏、場所はカントン島(南緯3度)。時間軸がずれていることに注意。 ここで a はニュートン冷却の係数である。ニュートン冷却のみなので、miの値としてはここで半分になっている。

  22.  生成メカニズムは対流と大規模波動がcoupleして出来たものらしいが万人が納得する理論はない。わかり易い理論として波動と第2種不安定(台風のメカニズムといわれている)を結びつけたWave-CISKを使ったHayashi(1970)がある。但しこの理論は潜熱放出のパラメーターでどんな周期の波でも出すことができ(cf. Takahashi, 1987)、また短波長の波が成長率が大きいのでどうであろう? とにかく赤道下部成層圏にケルビン波はあって、波数1で振幅が最大10msー1くらいはあるらしい。  次は西向きの波である。図はYanai and Maruyama(1966, J. M. S. J.)により発見されたRossby-garvity waveの伝播の様子を示したもの。東西波数4くらいで、位相速度は25msー1程度、振幅は2ないし3msー1の振幅をもっている。ここで観測されているRossby-gravity waveの振幅はそれほど大きくないことに注意。この波は散逸するとき東風を生成する。Holton and Lindzen(1972)はこの2つの波を使って準2年振動をモデルで再現したがRG波の振幅を大きく与えている。  大循環モデルに表れているRossby-重力波。Hayashi and Golder, 1994, J. Met. Soc. Japan. 波の振幅はv=0.5m/s程度である。

  23.  今日的には上の波では十分でないので(特にRossby-gravity波)、ここでは赤道ということを忘れて2つの東西に伝播する内部重力波と思って議論する。 今日的には上の波では十分でないので(特にRossby-gravity波)、ここでは赤道ということを忘れて2つの東西に伝播する内部重力波と思って議論する。  波の波長は40000kmと仮定する(波数1の赤道ケルビン波に対応)。位相速度は30msー1(東向き、及び西向き)を仮定する。問題はたびたび言及している波の振幅であるが、ここでは約6msー1の東西風の振幅を仮定する。この程度の振幅がないと1次元モデルで準2年振動はできない。それに対応して下部境界での運動量フラックスは (30) という値を選ぼう。 初期条件として年平均の風を用い(下層で弱い東風、じょじょに東風が強くなり30kmくらいでー10msー1となり、また東風が弱まりモデル上端近傍で弱い西風)、また安定度は高さの関数であり(これは年平均温度場から見積もった)、ニュートン冷却の大きさは下層で20日程度のDamping time、上端で大きい1日くらいのDamping timeを使った。平均流にたいする粘性係数の大きさは0.3m2sー1。  このようにして求めた結果が図に示してある。周期約1000日程度の準2年振動的な構造になっている。観測された図と比較して、定性的な構造は似ている。 Holton and Lindzen(1972)において、位相速度30msー1のケルビン波及びRossby-gravity波を使ったいい点はQBOの南北スケールと波の南北スケールが1500km程度と同じくらいということである。 Kelvin波として、 図:簡単な1次元モデルで得られた平均東西風の時間—高度断面図。 位相の下降伝播 Plumb(1984)による から c=30m/s として leは1000km程度になる。

  24. Lindzen and Holton(1968)のcritical levelでの波の吸収によるQBO 前の議論からcritial level の上で(東西風に対してはやい波) Critical level の下で         ここで、      である。この時、平均流の式は、 補足: この式は以下のようになるであろう。 f は –Cr<u<Crの範囲で一定の値におかれている。 ->いろいろの位相速度の波があり、波数や運動量フラックスは同じということ? Holton-Lindzen(1972) モデル:基礎方程式はこれまでと同様に となる.ここで  は上層の半年振動を示し,28km以上で, 計算結果(上の方に半年振動を入れている) である.            はKelvin波とRossby-gravity波の運動量フラックスで  は Kelvin波: Rossby-gravity波について分散式から Rossby-gravity波の場合,鉛直運動量フラックスは簡単に   ではなくて の南北平均 問題点:  運動量フラックスの値をもつためには赤道上のRossby-gravity waveの南北風振幅は下部境界で6msー1 程度必要。また2次元モデル(cf. Takahashi, 1987)によると、より大きな振幅(10msー1、この値は観測されている値に比べすごく大きい)が必要。 HLの1次元モデルで再現されないものとして西風の下方伝播が東風より速いことがある。前に述べたように鉛直と南北の2次元子午面循環を考慮すれは説明可能であろう(cf. Plumb and Bell, 1982 )。

  25. QBO-likeな流れの交代する実験例:Plumb and McEwan (1978)、流体力学的に興味深い。 3次元のmechanistic model で始めて再現した例:但し、大振幅のKelvin波とRossby-重力波を下部境界で与えないとQBOは再現されない。 実験装置:下でStanding波を作る。 t=150で左の方への流れ、t=170で右の方の流れが見える。 T=1500 days でのRossby-重力波の南北風。振幅が観測に比べて非常に大きいこと。 T=1800 days でのKelvin波の東西風。振幅が観測に比べて大きいこと(15m/sくらい)。 左が実験で得られた振動、右が理論の結果

  26. GCMの中のQBO: Takahashi(1999) 現実的なQBOが再現されている。いろいろの重力波でQBOが生成されているよう。 重力波の1例として:以下のような波が観測で見られる Takayabu et al. (1996, M. W. R.) n=1西向き重力波の構造: 対流が2日程度で振動しているよう。

  27. 3章を思い出そう。 QBOの南北スケールについて: Haynes(1998, Q. J. R. M. S.) のような式であった。この式の一部を使う。 圧力やNewton冷却の高さ依存を落とすと、 数値実験の例:南北に幅広いforcing(上図)にも関わらず、生成される東西風は赤道域のみとなっている(下図)。 のようになる。ここで、準2年の変動に比べて、Newtonian dampingの項は大きいのでおもな応答は  応答の南北スケールをLとし、時間変動を振動数として   =1/T、forcingの鉛直スケールをDとしてそれが左辺1項のz微分項に反映するとする。1項と2項が同じように応答するとすれば、スケール的に のようになるであろう。f=βL とすれば、上式は のように南北スケールが決まる。   =2x3.14/2/3x107=10-7=10-6=0.1、Dを10kmとすると 2x10-2x104/2x10-11=10133000km --> L=1500km程度で観測の値に近い値となる。

  28. Dunkerton,1978: 基礎方程式はこれまでと同様に 6−7:赤道域成層圏の半年振動 とする.ここで  は,半年振動の東風成分のみ生成するように細工してある. 西風を加速するKelvin波について、観測でみつかっているような位相速度c=50m/s,東西波数は1を選ぶ,またRossby-gravity波は入っていない(下部成層圏でつぶれてしまうであろう) 東風加速について:非線型の子午面移流      ,中緯度からの惑星波動の効果,重力波が考えられている.どの程度の割合かはまだ決着がついていない。 西風加速についても,最近重力波が大事であるといわれている.  NCAR GCMの半年振動:西風はおもにKelvin波と書いてある,西風が弱い,−>たぶん重力波が足りない <-対流のパラメータのせいであろう Sassi, F., R. R. Garcia and B. A. Boville, 1993: The stratopause semiannual oscillation in the NCAR community climate model. J. Atmos. Sci., 50, 3608-3624.

  29. GFDL- GCMの中に作られた半年振動。この場合は西風が強い風の振幅を持って再現されている。<ー対流のパラメータが違う、この場合は対流調節が用いられており、調節が瞬間的におこり、そのため多くの重力波が生成されているようである。 Hamilton and Mahlman, 1988, J. Atmos. Sci. CCSR/NIES/FRCGC GCMでの半年振動 中間圏界面の半年振動:成層圏界面の半年振動とは位相が逆転している。成層圏の半年振動の風をかんじて、逆方向の重力波が80kmまで伝わっていきそこで、波が壊れて逆位相に半年振動が生成されていると考えられている。 様々なGCMの半年振動。上:観測、2:ベルリンモデル、3:フランスモデル、4:UGAMPモデル、5:Unifiedモデルそれぞれ、ことなる結果になっている。西風が出ないモデルもある。

  30.  3章では太陽放射、および赤外放射によって作られる中層大気の風について考察し、その結果が中間圏において観測されている平均東西風と非常に異なることを示した。その矛盾を解く考えがLindzen(1981)とHolton(1982)、またはMatsuno(1982)によって提案され、現在、その基本的考え方が容認されている。前者は重力波の breaking によるもの、後者は波の散逸によるものと幾分の違いはあるが本質的なところは同じである(breakingの方が基本的か)。以下簡単なMatsunoの考えに従って述べることにする。  6−5で述べたように散逸がある場合の重力波の作用を考える。大気中に渦粘性とNewton冷却がある場合の、重力波の東西方向の運動方程式は近似的に(但し東西平均流の項は落としてある。) 6—8:中間圏大循環への内部重力波の役割 とかかれるであろう。ここでm は鉛直波数である。上式は鉛直拡散を考え、zの2階微分を取ればまあ近似としてはいいであろう。さらに波についての熱力学の方程式にNewton 冷却を導入し 非圧縮の連続の式を用いれば分散式の近似として となる(1項はこれまでたびたび出てきた)。ここでmのimaginary part は小さいと仮定してある。  そのとき重力波の運動量フラックスは以下のように表される。

  31.  この様な重力波の運動量フラックスを入れたときに中層大気の大循環がどのように変化するかをみてみよう。今非常に簡単化してみる。前と同じく東西に伝わる2つの波のみを考察する。重力波の水平波長は300kmと仮定する。(重力波の実体はまだ完全には把握されていない。もっと観測が必要であるが、スケールが細かい(および周期が短い)ことのために非常に難しい。) また波の位相速度を各々 +30msー1、ー30msー1とする。ここで一番重要な量は下部境界での運動量フラックスである。z=0で以下の値を選んだ。 この様な重力波の運動量フラックスを入れたときに中層大気の大循環がどのように変化するかをみてみよう。今非常に簡単化してみる。前と同じく東西に伝わる2つの波のみを考察する。重力波の水平波長は300kmと仮定する。(重力波の実体はまだ完全には把握されていない。もっと観測が必要であるが、スケールが細かい(および周期が短い)ことのために非常に難しい。) また波の位相速度を各々 +30msー1、ー30msー1とする。ここで一番重要な量は下部境界での運動量フラックスである。z=0で以下の値を選んだ。 この数値は波の東西風の振幅として7.2cms−1の値に対応している。この値は非常に小さい値である。 f = 一定の時の式は以下のようであった: <-- 等から 注意:3章でのFx=0の場合は右のようであった。  この式に Fx を入れて具体的に解いてみるとどうなるか?が今の問題である。

  32. 結果が図にのっている。中間圏の風速が非常に減速されている。そして約80km近くで風速がゼロになっている。この結果は平均東西風の分布とかなりよく似ている(60km近傍の風はまだかなり大きいが)。 結果が図にのっている。中間圏の風速が非常に減速されている。そして約80km近くで風速がゼロになっている。この結果は平均東西風の分布とかなりよく似ている(60km近傍の風はまだかなり大きいが)。  図:内部重力波を加えた場合の中層大気大循環の時間的振舞い。計算結果 解析による40Nにおける東西風の時間−高度の断面図.100kmくらいのところに逆向きの風が吹いている.100kmくらいの西風は結構大きいが東風は弱い.  中間圏にDragがかかった時の子午面循環と温度の関係図:

  33. Matsuno(1982)では南北方向も含めてもうすこし、多くの重力波(異なる位相速度)が入っている。Matsuno(1982)では南北方向も含めてもうすこし、多くの重力波(異なる位相速度)が入っている。 Holton (1982, J. Atmos. Sci.)では重力波が壊れること、breakingによるDragをみつもり(さらにbreakingに伴う拡散係数も決まる)、それを用いて東西風の変化を求めている。 そのようにして求めた東西風の時間変化の図:ただしこのモデルでは下部熱圏での逆向きの風ははっきりしない? Holtonでは、c = 0. +20m/s, -20m/sの波を考慮している。 波の水平波長依存の問題:Matusnoは200km、Holtonは800km(これは大きすぎか?):実際は100kmより短い?(右はOHのairglow観測から) 大気topはイオン抵抗が入っていて東西風はすこし弱くなっている(上)。中図は重力波のかわりに平均東西風をゼロにする Rayleigh 摩擦が入っている。下段が重力波が入った例 Nakamura et al., G. R. L., 1998

  34. 全ての運動量フラックスは積分して、 エネルギースペクトルの仮定: Warner and McIntyre, 1996, JAS 補足:重力波によるDragパラーメータの例  波による力は、これまでのように運動量フラックスの鉛直微分として mは鉛直波数、φは動径方向、ωはdoppler-shift した振動数、エネルギー密度が関数形で与えてある。 整理すると、 Pseudo-momentum fluxは以下の形になる 大気大循環モデルなどに導入して使われる

More Related