230 likes | 408 Views
Neutrinoless Double Beta Decay – Status of GERDA. Ludwig Niedermeier, Universität Tübingen IDEA, Blaubeuren, 4.7.2007. ββ. Double Beta Decay. _. e, right-handed. _. _. e, left-handed. e, left-handed. _. = . Neutrinoless Double Beta Decay. 2 2 decay.
E N D
Neutrinoless Double Beta Decay – Status of GERDA Ludwig Niedermeier, Universität Tübingen IDEA, Blaubeuren, 4.7.2007
ββ Double Beta Decay
_ e, right-handed _ _ e, left-handed e, left-handed _ = Neutrinoless Double Beta Decay 22 decay 20 decay n p n p _ W- e, right-handed W- e- e- e- e- _ e, right-handed W- W- n p n p 20 conditions: Majorana particle ΔL=2 Lepton number violation P( )~(m/E)² for m>0 E (e–+e–) in keV
BACKGROUND >0 (T1/2~√¯¯) t From 0ν2β to Neutrino Mass • Exp. determination of 20 half life 76Ge 1.4·1026 y N Number of Ge atomsS 20 signalB Background signalsb Bgr. rate (kg s keV)-1m Ge massM Ge mol. weighta 76Ge enrichment Detection efficiencyE Energy binningt Measurement time GERDAPhase II3y 35kg GERDAPhase I1y 15kg Effective Neutrino Mass Determination or Limit BACKGROUND–FREE (T1/2~t)
Impact on Neutrino Physics mee[eV] Hd-M ‚best value‘PLB586(2004)198 GERDA I GERDA II 1t 76Ge GERDA/Majorana Current status: m²12 = (7.92±0.07)·10-5 eV² (solar )m²23 = (2.6±0.4)·10-3 eV² (atm. )normal hierarchy or inverse hierarchy ? (inverse) (normal) 3 1 m²12 2 m²23 m²23 2 m² in eV m²12 3 1 ↔mee absolute mass scale
Two completed experimentsHeidelberg-Moscow IGEX 76Ge [Klapdor-K. et al, Phys.Lett. B586(2004)198]Best fit: T2β0= 1.2·1025 y [Phys.Rev.D65:092007,2002]: Enriched Ge detectors (a=86%) 8.9 kg y of 76Ge data T1/2(2β0ν) > 1.57×1025 y (90% C.L.) A.M. Bakalyarov, A. Ya. Balysh, S. T. Belyaev,V. I. Lebedev, S. V. Zhukov (Kurchatov Institute, Moscow) T1/2(2β0ν) > 1.55 · 1025 y (90% C.L.) [Письма в ЭЧАЯ. 2005. T.2, No.2(125). C.21-28]
Gerda - Motivation Improve Background by ultra-pure shieldingHPGe detectors inLiquid ArgonGERDA 10-3 (kg·y·keV)-1[IGEX 0.1–0.3 (kg·y·keV)-1][Hd-M 0.17 (kg·y·keV)-1] – Improvement of mee sensitivity– Check of former publications Hd-Moscow GERDA
Gerda – Detector Overview LNGS3600 mwe Phase I15kg · 1y at 10-2 (keV kg y)-1 T1/20ν> 1.2·1025y (HdM: 1.2·1025y) Phase II35kg · 3y at 10-3 (keV kg y)-1 T1/20ν> 1.4·1026y Phase III 1 ton 76Ge exp. (GERDA/Majorana) depending on Phase I/II outcome Background goal 10-4 (keV kg y)-1 Water shieldCherenkov muon veto LAr shield in steel cryostat ~20 Ge crystals on 7 Cu strings~35kg of 76Ge (a>85%)
Ge Detectors Phase I 5 HdM HPGe: p-type 11kg, ΔE= 2 – 3 keV 3 IGEX HPGe: p-type 6.5kg in Nov 05 from Canfranc to LNGS restored (cooled) ΔE≈2.3 keV Refurbishment at Canberra/Olen into ultra-pure detector holders(materials used: Copper, PTFE, silicon) Underground storage possibility in Hades 500mwe Tested at GDL@LNGS (former LArGe): resolution, efficiency, leakage current, cooling cycles Internal background estimation: 60Co 0.5y exposure history (3.5–15)·10-3 /(kg keV y) SF~368Ge 0.5y exposure history 8·10-4 /(kg keV y) SF~2suspension+cabling+electronics: ~5·10-3 /(kg keV y) SF~2-3
Production: Purification 6N (PPM Göttingen) Monozone refinement 8-9N (PPM) Crystal pulling (IKZ Berlin) Detector production (Canberra) First depGe (20kg) tests under way CZ puller installation, 1st crystals (Si, Ge) Ge Detectors Phase II Available: 37.5 kg of GeO2 (87% 76Ge) ~10 HPGe n-type (~20 kg) 3x6 fold segmentation intended Internal background estimation: 60Co ~40d exposure during fabrication 3.5·10-5 /(kg keV y) SF>2068Ge ~40d exposure during fabrication 1.3·10-3(1st) ~5·10-4(2nd year) SF>10suspension+cabling+electronics: 2·10-3 /(kg keV y) SF~3-10
Ge Detectors Phase II front-endelectronics 7 strings with 5 detectors 18-fold segmented detector 3 layers, 6 angular
GERDA – Suppression Methods PSA: Single Site ↔Multi Site Crystal Segmentation 60Co 60Co First test (MPI): 1.6kg n-type HPGe 3x6 fold E resolution of segments: 2.3–4.0 keV @ 1332keV @ 2MeV: suppression by ~10 Test at MPI: ClassA =SSE ~80% survive cutClassB =MSE(bgr) ~50% rejected suppression by ~2
GERDA – Crystal Segmentation Simulations [NIMA 570 (2007) 479]
GERDA – Cryostat Stainless steel cryostat (3cm double wall) 228Th <830 μBq/kg 226Ra <810 μBq/kg <1.7·10-5/kg keV y <2.3·10-6/kg keV y Inner Cu shield 3 – 6cm 228Th <39 μBq/kg 226Ra <50 μBq/kg(negligible compared to steel) Superinsulation 228Th <2.2·10-6/kg keV y 226Ra <1.4·10-6/kg keV y Liquid Ar (70m³) 222Rn ~ 0.4 – 4mBq/m³ Required: 0.5 µBq/m³ [10−4 /(kg keV y)] LAr Purification and/or Decay of f~1000 needed First tests indicate feasibility
Gerda Muon Veto – A Water Cherenkov Detector plastic scintillator 66 PMTs cryostat Ge detectors water tank reflector VM2000 ‚lower pillbox‘
Simulations – Muon distribution E>120MeV ~10 years 77Ge/77mGe talk (Georg Maierhofer)
GDL (Gerda Detector Laboratory)LArGe Test Bench Dewar Pb+Cu -shieldedcryostat (1.3m³) In constructionuntil end of 2007 Existing !! Volume 70 lCu infrared shieldNow: Ar 5.0 p-type, 1.6 kg Tests of prototype Ge detectors in LAr
36Ar 0νECEC • Examination of0vECEC :36Ar + 2e- 36S + γ(431keV) • - 1.6kg HPGe in 70l dewar with natural liquid Ar (0.336% 36Ar) - 2.5cm passive lead shield T1/20νECEC > 1.9·1018 y (68% C.L.) GDL (~15kg y) 1022 –1023 y • limited by 39Ar ~3/(kg keV y)
Gerda – Schedule Construction Phase IPhase IIPhase III • Safety concept approved by LNGS • HPGe prototype testing in GDL ongoing • Water tank bottom plate in construction • Cryo tank: installed by end of 2007 • Water tank completion: first half of 2008 • Muon veto & Infrastructure(building, clean room, lock): fall 2008 • Commissioning: beginning of 2009 • Insertion of Phase I detectorsand data taking (1 year): 2009 • Insertion of Phase II detectors • Data taking Phase II (3 years) • 1 ton 76Ge exp. GERDA+Majoranadepending on Phase I+II outcome
Gerda Collaboration • INFN Laboratori Nazionali del Gran Sasso, Assergi, Italy • Joint Institute for Nuclear Research, Dubna, Russia • Max-Planck-Institut für Kernphysik, Heidelberg, Germany • Jagellonian University, Krakow, Poland • Università di Milano Bicocca e INFN Milano, Milano, Italy • Institute for Nuclear Research of the Russian Academy of Sciences, Moscow, Russia • Institute for Theoretical and Experimental Physics, Moscow, Russia • Russian Research Center Kurchatov Institute, Moscow, Russia • Max-Planck-Institut für Physik, München, Germany • Dipartimento di Fisica dell’Università di Padova e INFN Padova, Padova, Italy • Physikalisches Institut, Universität Tübingen, Germany • EC-JRC-IRMM, Geel, Belgium
Outlook: Majorana Ultra-large Ge detector array, m(76Ge) ~ 1 ton Proposed (2003) 500 kg · 5 y a = 86% T1/20ν = 1027 y b = 10-3/(kg·ROI·y) mν ~ 0.04 eV Passive shielding: 10cm of old Pb(High Z !!) 40cm of common Pb Active shielding: μ veto (10cm plastic sc.) investigate secondary nRequired depth: 5000 mwe Internal bgr estimated to 1–10 ·10-3/(kg keV a) from 68Ge, 60Co reducable by factor ~20 (PSD+Segm.) Low energy bgr estimated to 2/(kg keV a), competitive with dark matter experiments
Outlook: Majorana 2007 Submission of R&D for 1 ton detector and for prototype 2007-2011 60 kg Ge prototype det. (‚Majorana Demonstrator‘) = 30 kg of 76Ge (86%), 30 kg of natural Ge 40 kg p-type, 20 kg n-type n-type, 6x6 segm. p-type, point contact det. pos. reconstr. 1-2mm low threshold 0.3 keV PSA f=3 for 60Co highly sensitive PSA 120 kg y at 10-3 /(kg·ROI·y) T1/20v > 1.6·1026 y mee < 0.19 eV (90% C.L.) 2009-2011 Majorana Demonstrator construction 2011-2013 Operation, analysis Valuable Information Exchange: GERDA and Majorana collaborations