1 / 13

Funktionsundersøgelse

Funktionsundersøgelse. Indhold. Formål Gennemgang af eksempel 7 punkter ø1 side 71 a) f(x)=x 3 -2x 2 -4x+8. Definitionsmængde for f. X-værdier Dm(f) = R. Skæringspunkter med førsteaksen. Nulpunkter f(x)=x 3 -2x 2 -4x+8 L={-2;2} Udregning. Udregning. a 3 =1 a 0 =8.

trang
Download Presentation

Funktionsundersøgelse

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Funktionsundersøgelse

  2. Indhold • Formål • Gennemgang af eksempel 7 punkter ø1 side 71 a) f(x)=x3-2x2-4x+8

  3. Definitionsmængde for f • X-værdier Dm(f) = R

  4. Skæringspunkter med førsteaksen • Nulpunkter f(x)=x3-2x2-4x+8 L={-2;2} Udregning

  5. Udregning a3=1 a0=8 x=1 x=2 x=4 x=8 x=-1 x=-2 x=-4 x=-8 (X3-2x2-4x+8) : (x-2) = x2-4 -(x3-2x2) 0-4x+8 -(-4x+8) 0

  6. -2 2 -2 2 + + - Fortegnsvariation for f • Fortegn for f(x) Fortegnsvariation

  7. Fortegnsvariation

  8. Monotoniforhold for f • Tangenthældningen f ’(x)=3x2-4x-4 • Nulpunkter Udregning L={-0,667;2} • Fortegnsvariation Monotoniforhold x f ’(x) f(x) -0,667 2 + 0 - 0 + Ekstrema for f

  9. Udregning f ’(x)=3x2-4x-4 a=2 b=-4 c=-4 d=b2-4ac d=42-4·3·(-4)=64

  10. Monotoniforhold

  11. Ekstrema for f + 0 - maksimum • 0 + minimum Monotoniforhold for f Lokalt minimum f(-0,667)=9,4814815 (-0,667;9,481) Lokalt maksimum f(2)=0 (2;0)

  12. Værdimængde for f • Y-værdier Vm(f) = R

  13. Tegning

More Related