100 likes | 391 Views
PFN. Ferrite Material Modeling (1) : Kicker principle. Provide transverse kick to extract particle beam from synchrotron ring Multiple units in a single vessel Ferrite block Coil Pulse former (PFN) Support structures Strong beam coupling also in idle state. 0.8 m.
E N D
PFN Ferrite Material Modeling (1) :Kicker principle • Provide transverse kick to extract particle beam from synchrotron ring • Multiple units in a single vessel • Ferrite block • Coil • Pulse former (PFN) • Support structures • Strong beam coupling also in idle state 0.8 m 22. Oktober 2019 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Dipl.-Ing. Lukas Hänichen | 1
Ferrite Material Modeling (2) :linear, non-linear, hysteretic behaviour • Magnetic properties are given by B-H characteristics • Ferrite material exhibits hysteresis saturation non-linear (piecewise linear) hysteretic linear • Magnetization losses are given by the area bounded by the loop 22. Oktober 2019 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Dipl.-Ing. Lukas Hänichen | 2
Ferrite Material Modeling (3) :Complex Permeability • Material datasheet provides complex permeability as a function of frequency • Complex permeability maintains a linear dependency • “Tilted ellipse” approximates hysteresis loop 22. Oktober 2019 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Dipl.-Ing. Lukas Hänichen | 3
Ferrite Material Modeling (4) :Dispersion Model for Time Domain • Diifferent for every frequency • How about time domain ? • Dispersion model fit to frequency domain data [Gutschling 1998] … • How does it compare ? • Time domain dispersion model does not entirely capture the characteristics… 22. Oktober 2019 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Dipl.-Ing. Lukas Hänichen | 4
Ferrite Material Modeling (5) :Dispersion Model for Time Domain • Split frequency range in multiple decades • Matches the characteristics better but causes discontinuity of permeability and multiplies calculation time • Alternate improvement: higher order dispersion model (not available at present) 22. Oktober 2019 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Dipl.-Ing. Lukas Hänichen | 5
SIS 100 Kicker : Status of Coupling Impedance Calculation (1) ~50 000 cells • SIS 18 Kicker simulated by Doliwa et al. 2006 • SIS 100 Kicker module measures about two times the size in all three dimensions • SIS 100 Kicker features more complicated coil design • Influence of dielectric spacers ? • Efficiency of eddy current trap using copper inserts ? >200 000 cells 22. Oktober 2019 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Dipl.-Ing. Lukas Hänichen | 6
SIS 100 Kicker : Status of Coupling Impedance Calculation (2) • Longitudinal Z • Good agreement found between both methods • Slight deviation as explained earlier (ferrite modeling in time and frequency domain) 22. Oktober 2019 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Dipl.-Ing. Lukas Hänichen | 7
SIS 100 Kicker : Influence of coil coupling • Coil termination has significant impact on transverse Z 22. Oktober 2019 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Dipl.-Ing. Lukas Hänichen | 8
Current work • Ferrite losses are sufficiently captured by traditional wakefield solver • According CST higher order magnetic dispersion should yield better agreement but will not be implemented in near future • Full Geometry of SIS 100 kicker system requires higher computational resources (coils, support structure and other details are included) • This currently exceeds the limit of adressable memory on conventional 32bit architecture • 64bit architecture should overcome this limit (in progress) • Include external network impedance: lumped circuit model, testing with wake solver to gain a deeper understanding of coupling 22. Oktober 2019 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Dipl.-Ing. Lukas Hänichen | 9