1 / 24

Lecture 9 Sept 28

Lecture 9 Sept 28. Chapter 3 Arithmetic for Computers. Arithmetic for Computers. §3.1 Introduction. Operations on integers Addition and subtraction Multiplication and division Dealing with overflow Floating-point real numbers

tibor
Download Presentation

Lecture 9 Sept 28

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Lecture 9 Sept 28 Chapter 3 Arithmetic for Computers

  2. Arithmetic for Computers §3.1 Introduction • Operations on integers • Addition and subtraction • Multiplication and division • Dealing with overflow • Floating-point real numbers • Representation and operations

  3. Integer Addition Example: 7 + 6 §3.2 Addition and Subtraction • Overflow if result out of range • Adding +ve and –ve operands, no overflow • Adding two +ve operands • Overflow if result sign is 1 • Adding two –ve operands • Overflow if result sign is 0

  4. Integer Subtraction Add negation of second operand Example: 7 – 6 = 7 + (–6) +7: 0000 0000 … 0000 0111–6: 1111 1111 … 1111 1010+1: 0000 0000 … 0000 0001 Overflow if result out of range • Subtracting two +ve or two –ve operands, no overflow • Subtracting +ve from –ve operand • Overflow if result sign is 0 • Subtracting –ve from +ve operand • Overflow if result sign is 1

  5. Dealing with Overflow Some languages (e.g., C) ignore overflow • Use MIPS addu, addui, subu instructions Other languages (e.g., Ada, Fortran) require raising an exception • Use MIPS add, addi, sub instructions • On overflow, invoke exception handler • Save PC in exception program counter (EPC) register • Jump to predefined handler address • mfc0 (move from coprocessor reg) instruction can retrieve EPC value, to return after corrective action

  6. Two’s-Complement Addition and Subtraction Binary adder used as 2’s-complement adder/subtractor.

  7. Simple Adders Digit-set interpretation: {0, 1} + {0, 1} = {0, 2} + {0, 1} Digit-set interpretation: {0, 1} + {0, 1} + {0, 1} = {0, 2} + {0, 1} Binary half-adder (HA) and full-adder (FA).

  8. Full-Adder Implementations Full adder implemented with two half-adders, by means of two 4-input multiplexers, and as two-level gate network.

  9. Critical path Ripple-Carry Adder: Slow But Simple Ripple-carry binary adder with 32-bit inputs and output.

  10. Carry Propagation Networks gi = xiyi pi = xiyi The main part of an adder is the carry network. The rest is just a set of gates to produce the g and p signals and the sum bits.

  11. Carry-Lookahead Logic with 4-Bit Block Blocks needed in the design of carry-lookahead adders with four-way grouping of bits.

  12. Another Speed-Up Method: Carry Select Allows doubling of adder width with a single-mux additional delay Carry-select addition circuit

  13. Arithmetic for Multimedia • Graphics and media processing operates on vectors of 8-bit and 16-bit data • Use 64-bit adder, with partitioned carry chain • Operate on 8×8-bit, 4×16-bit, or 2×32-bit vectors • SIMD (single-instruction, multiple-data) • Saturating operations • On overflow, result is largest representable value • c.f. 2’s-complement modulo arithmetic • E.g., clipping in audio, saturation in video

  14. Shift-Add Multiplication Multiplication of 4-bit numbers in dot notation z(j+1) = (z(j) + yjx 2k) 2–1 with z(0) = 0 and z(k) = z |––– add –––| |–– shift right ––|

  15. 1000 × 1001 1000 0000 0000 1000 1001000 Multiplication §3.3 Multiplication • Start with long-multiplication approach multiplicand multiplier product Length of product is the sum of operand lengths

  16. Multiplication Hardware Initially 0

  17. Optimized Multiplier Perform steps in parallel: add/shift One cycle per partial-product addition That’s ok, if frequency of multiplications is low

  18. Faster Multiplier Uses multiple adders • Cost/performance tradeoff Can be pipelined • Several multiplications performed in parallel

  19. MIPS Multiplication Two 32-bit registers for product • HI: most-significant 32 bits • LO: least-significant 32-bits Instructions • mult rs, rt / multu rs, rt • 64-bit product in HI/LO • mfhi rd / mflo rd • Move from HI/LO to rd • Can test HI value to see if product overflows 32 bits • mul rd, rs, rt • Least-significant 32 bits of product –> rd

  20. Division • Check for 0 divisor • Long division approach • If divisor ≤ dividend bits • 1 bit in quotient, subtract • Otherwise • 0 bit in quotient, bring down next dividend bit • Restoring division • Do the subtract, and if remainder goes < 0, add divisor back • Signed division • Divide using absolute values • Adjust sign of quotient and remainder as required quotient dividend 1001 1000 1001010 -1000 10 101 1010 -1000 10 divisor remainder n-bit operands yield n-bitquotient and remainder

  21. Division Hardware Initially divisor in left half Initially dividend

  22. Optimized Divider One cycle per partial-remainder subtraction • Looks a lot like a multiplier! • Same hardware can be used for both

  23. MIPS Division • Use HI/LO registers for result • HI: 32-bit remainder • LO: 32-bit quotient • Instructions • div rs, rt / divu rs, rt • No overflow or divide-by-0 checking • Software must perform checks if required • Use mfhi, mflo to access result

  24. Binary and Decimal Multiplication Position 7 6 5 4 3 2 1 0 Position 7 6 5 4 3 2 1 0 ========================= ========================= x24 1 0 1 0 x104 3 5 2 8 y 0 0 1 1 y 4 0 6 7 ========================= ========================= z(0) 0 0 0 0 z(0) 0 0 0 0 +y0x24 1 0 1 0 +y0x104 2 4 6 9 6 –––––––––––––––––––––––––– –––––––––––––––––––––––––– 2z(1) 0 1 0 1 0 10z(1) 2 4 6 9 6 z(1) 0 1 0 1 0 z(1) 0 2 4 6 9 6 +y1x24 1 0 1 0 +y1x104 2 1 1 6 8 –––––––––––––––––––––––––– –––––––––––––––––––––––––– 2z(2) 0 1 1 1 1 0 10z(2) 2 3 6 3 7 6 z(2) 0 1 1 1 1 0 z(2) 2 3 6 3 7 6 +y2x24 0 0 0 0 +y2x104 0 0 0 0 0 –––––––––––––––––––––––––– –––––––––––––––––––––––––– 2z(3) 0 0 1 1 1 1 0 10z(3) 0 2 3 6 3 7 6 z(3) 0 0 1 1 1 1 0 z(3) 0 2 3 6 3 7 6 +y3x24 0 0 0 0 +y3x104 1 4 1 1 2 –––––––––––––––––––––––––– –––––––––––––––––––––––––– 2z(4) 0 0 0 1 1 1 1 0 10z(4) 1 4 3 4 8 3 7 6 z(4) 0 0 0 1 1 1 1 0 z(4) 1 4 3 4 8 3 7 6 ========================= ========================= Step-by-step multiplication examples for 4-digit unsigned numbers.

More Related