1 / 15

§4 泰勒公式与极值问题

§4 泰勒公式与极值问题. 一 、高阶偏导数. 纯偏导. 混合偏导. 定义:二阶及二阶以上的偏导数统称为高阶偏导数. 问题 :. 混合偏导数都相等吗?具备怎样的条件才相等?. 二 、中值定理和泰勒公式. 上式称为 二元函数的拉格朗日中值公式. 三 极值问题. 仿照一元函数,凡能使一阶偏导数同时为零的点,均称为函数的稳定 点. 注意:. 驻点. 极值点. 问题:如何判定一个稳定点是否为极值点?.

thy
Download Presentation

§4 泰勒公式与极值问题

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. §4泰勒公式与极值问题

  2. 一、高阶偏导数 纯偏导 混合偏导 定义:二阶及二阶以上的偏导数统称为高阶偏导数.

  3. 问题: 混合偏导数都相等吗?具备怎样的条件才相等?

  4. 二、中值定理和泰勒公式

  5. 上式称为二元函数的拉格朗日中值公式.

  6. 三 极值问题

  7. 仿照一元函数,凡能使一阶偏导数同时为零的点,均称为函数的稳定点.仿照一元函数,凡能使一阶偏导数同时为零的点,均称为函数的稳定点.

  8. 注意: 驻点 极值点 问题:如何判定一个稳定点是否为极值点?

More Related