220 likes | 371 Views
This study presents the development and enhancement of ILGAD (Inverse Low Gain Avalanche Detector) models using TCAD simulations to analyze gain variation with bias and n+/p well doping. The research highlights significant improvements over previous models, validated against experimental data. We explore radiation effects using new Perugia trap and Kramberger acceptor removal models, demonstrating the performance and reliability of the ILGAD under varied conditions. Simulation results indicate effective depletion and signal behavior under both red and infrared laser illumination, providing insights into detector response and radiation damage.
E N D
ILGAD TCAD Simulations: first approximations • F.R. Palomo1, S.Hidalgo2, I.Vila3 • fpalomo@us.es • 1Dept. IngenieríaElectrónica, Escuela Superior de Ingenieros • Universidad de Sevilla, Spain • 2CNM-IMB Barcelona, Spain • 3IFCA Santander, Spain
Introduction • Development of several ILGAD models to test gainvariationwithbias and n+/pwell doping • Improvement in the ILGAD modelscomparedwith experimental data • Analisis of radiationeffects in ILGAD • 300um New Perugia Trap + KrambergerAcceptorremovalmodels • 50um New Perugia Trap+ KrambergerAcceptorremovalmodels
Sentaurus TCAD SimulationSetUp P1Left P1Right 50 mm InverseLowGainAvalanche Detector (ILGAD) cross-section 30 mm y x z • SimulationSetup: • Red Pulsed Laser: 670 nm, 10 mm spot, 50W/cm2, 200 ps, • BackIllumination at P1 Right • FrontIlluminationalignedwith P1 Right • IR Pulsed Laser: 1064nm, 30W/cm2,10 mm spot, 30W/cm2, 200 ps at P1 Right • 2D detector model: 1 mm in Z direction, 5 mm in X direction, • 300/50 mm in Y direction) Doping profilesunderconfidenciality rules
ILGAD IV Experimental Experimentallywesee a full depletion at the n++-p junction (multiplicationlayer) around 30V and a softbehaviour in the IV plot up to ~400 V I.Vila, Updateonthe ILGAD characterization, RD50 Nov 22th 2016
ILGAD IV Simulation 300mm ILGAD 50mm ILGAD Both ILGAD models (300 mm, 50 mm thickness) show full depletion at n++-p (multiplicationlayer) around 30 V, as expected. Forthe 300 mm wechoose 150V, 300V, 450V as biasvoltage, forthe 50 mm wechoose 50V, 100V, 150V as biasvoltage
ILGAD 300 mm Red Laser Back Transient: Simulation shows gain (~4) Laser 670nm (red), illuminatingon P1 rightstrip (just in themiddle), signalobserved in the N electrode (cathode). Comparing ILGAD and itsassociated PIN (PINILGAD) theplot shows a gain factor around 4 (modelverification).
ILGAD Red Laser Back Transient Experimental 300K Experimental data illuminatingtheanode (back side), with a red laser (670nm) in the P1 Rightstrip I.Vila, Updateonthe ILGAD characterization, RD50 Nov 22th 2016
ILGAD 300 um Red Laser (670nm) Back Transient P1Right Q 450V 9,22e-16C Q 300V 8,24e-16C Q 150V 7e-16C PrimaryElectrons Q PINILGAD~2,9e-16C MultiplicationOnset Secondary Holes
ILGAD Red Laser Front Transient Experimental 300K Experimental data illuminatingthecathode (frontside), with a red laser (670nm) allignedwith P1 Rightstrip I.Vila, Updateonthe ILGAD characterization, RD50 Nov 22th 2016
ILGAD 300mm Red Laser (670nm) Front Q 450V 9,41e-16C Q 300V 8,34e-16C Q 150V 7e-16C Primary and Secondaryholecurrent MultiplicationOnset Q PINILGAD~2,6e-16C
LGAD IR Laser Experimental Results Experimental data TCT laser (IR, 1064nm) allignedwith P1 Rightstrip I.Vila, Updateonthe ILGAD characterization, RD50 Nov 22th 2016
ILGAD 300um IR (1064nm) Laser Q 450V 2,55e-16C Q 300V 2,30e-16C Q 150V 2,1e-16C Q PINILGAD~6,98e-17C
ILGAD 50 um Red Laser (670nm) Back Transient P1Right Q 450V 9,21e-15C Q 100V 1,19e-15C Q 50V 9,21e-16C Q PINILGAD~2,9e-16C
ILGAD 50 um IR (1064nm) Laser Transient P1Right Q 150V 1,24e-16C Q 100V 1,02e-16C Q 50V 2,47e-17C Q PINILGAD~2,47e-17C
RadiationDamageModels Onedamagemodel, Traps+AcceptorRemoval New Perugia Modelf =1e15 up to 7,5e15 neq/cm2 AcceptorRemoval New Perugia c=10e-16 cm-2 Radiationeffects in LowGainAvalancheDetectorsafterhadronirradiations, G.Kramberger et al., JINST 2015 10 P07006 Modeling of radiationdamageeffects in silicondetectors at highfluences HL-LHCwithSentaurus TCAD, D.Passeri et al, NIMA 824 (2016), 443-445
Conclusions • The ILGAD model shows reasonableagreementwithexperiments (experimental resultsavailable are for a similar model, no exactlythesame). • Thetimingbehavior (risingedge) at the central rightanodestrip shows no dependencewithradiation • Thegain and signal general behaviourunderirradiationis similar to the LGAD as expected • As expected, the 50 mm device shows betterbehaviourunderradiation
Thanksforyourattention fpalomo@us.es